
Prove that
\[\dfrac{{cotA + cosecA - 1}}{{cotA - cosecA + 1}} = \dfrac{{1 + cosA}}{{sinA}}\]
Answer
577.8k+ views
Hint: Here we will solve the left hand side of the given equation and reach to the right hand side to prove it. We will use several identities to solve LHS:
Also, \[\cot A = \dfrac{{\cos A}}{{\sin A}};\cos ecA = \dfrac{1}{{\sin A}}\]
Complete step-by-step answer:
Let us consider the Left hand side of the given equation:-
\[LHS = \dfrac{{cosec{\text{ }}A + cot{\text{ }}A - 1}}{{cot{\text{ }}A - cosec{\text{ }}A + 1}}\]
Now using the following identity and substituting the value of 1 in numerator we get:-
\[
1 + {\cot ^2}A = \cos e{c^2}A \\
\Rightarrow \cos e{c^2}A - {\cot ^2}A = 1 \\
\]
Substituting the value of 1 we get:-
\[LHS = \dfrac{{cosec{\text{ }}A + cot{\text{ }}A - \left( {\cos e{c^2}A - {{\cot }^2}A} \right)}}{{cot{\text{ }}A - cosec{\text{ }}A + 1}}\]
Now we know that:
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Hence applying this identity in numerator we get:-
\[LHS = \dfrac{{\cos ec{\text{ }}A + \cot {\text{ }}A - \left[ {\left( {\cos ecA + \cot A} \right)\left( {\cos ecA - \cot A} \right)} \right]}}{{\cot {\text{ }}A - \cos ec{\text{ }}A + 1}}\]
Now taking \[\cos ecA + \cot A\] as common from numerator we get:-
\[LHS = \dfrac{{\left( {\cos ec{\text{ }}A + \cot {\text{ }}A} \right)\left[ {1 - \left( {\cos ecA - \cot A} \right)} \right]}}{{\cot {\text{ }}A - \cos ec{\text{ }}A + 1}}\]
Solving it further we get:-
\[
LHS = \dfrac{{\left( {\cos ec{\text{ }}A + \cot {\text{ }}A} \right)\left[ {1 - \cos ecA + \cot A} \right]}}{{\cot {\text{ }}A - \cos ec{\text{ }}A + 1}} \\
\Rightarrow LHS = \cos ec{\text{ }}A + \cot {\text{ }}A \\
\]
Now we know that:
\[\cot A = \dfrac{{\cos A}}{{\sin A}};\cos ecA = \dfrac{1}{{\sin A}}\]
Hence substituting the values we get:-
\[LHS = \dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}\]
Now taking LCM and solving it further we get:-
\[
LHS = \dfrac{{1 + cosA}}{{sinA}}{\text{ }} \\
{\text{ }} = RHS \\
\]
Therefore,
\[LHS = RHS\]
Hence proved.
Note: Students may convert cot A and cosec A in the terms of sin A and cos A which can make the solution very lengthy or even they may not prove the given equation.
So they should proceed in the same way as given in the solution.
All the identities used should be correct and accurate.
Also, \[\cot A = \dfrac{{\cos A}}{{\sin A}};\cos ecA = \dfrac{1}{{\sin A}}\]
Complete step-by-step answer:
Let us consider the Left hand side of the given equation:-
\[LHS = \dfrac{{cosec{\text{ }}A + cot{\text{ }}A - 1}}{{cot{\text{ }}A - cosec{\text{ }}A + 1}}\]
Now using the following identity and substituting the value of 1 in numerator we get:-
\[
1 + {\cot ^2}A = \cos e{c^2}A \\
\Rightarrow \cos e{c^2}A - {\cot ^2}A = 1 \\
\]
Substituting the value of 1 we get:-
\[LHS = \dfrac{{cosec{\text{ }}A + cot{\text{ }}A - \left( {\cos e{c^2}A - {{\cot }^2}A} \right)}}{{cot{\text{ }}A - cosec{\text{ }}A + 1}}\]
Now we know that:
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Hence applying this identity in numerator we get:-
\[LHS = \dfrac{{\cos ec{\text{ }}A + \cot {\text{ }}A - \left[ {\left( {\cos ecA + \cot A} \right)\left( {\cos ecA - \cot A} \right)} \right]}}{{\cot {\text{ }}A - \cos ec{\text{ }}A + 1}}\]
Now taking \[\cos ecA + \cot A\] as common from numerator we get:-
\[LHS = \dfrac{{\left( {\cos ec{\text{ }}A + \cot {\text{ }}A} \right)\left[ {1 - \left( {\cos ecA - \cot A} \right)} \right]}}{{\cot {\text{ }}A - \cos ec{\text{ }}A + 1}}\]
Solving it further we get:-
\[
LHS = \dfrac{{\left( {\cos ec{\text{ }}A + \cot {\text{ }}A} \right)\left[ {1 - \cos ecA + \cot A} \right]}}{{\cot {\text{ }}A - \cos ec{\text{ }}A + 1}} \\
\Rightarrow LHS = \cos ec{\text{ }}A + \cot {\text{ }}A \\
\]
Now we know that:
\[\cot A = \dfrac{{\cos A}}{{\sin A}};\cos ecA = \dfrac{1}{{\sin A}}\]
Hence substituting the values we get:-
\[LHS = \dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}\]
Now taking LCM and solving it further we get:-
\[
LHS = \dfrac{{1 + cosA}}{{sinA}}{\text{ }} \\
{\text{ }} = RHS \\
\]
Therefore,
\[LHS = RHS\]
Hence proved.
Note: Students may convert cot A and cosec A in the terms of sin A and cos A which can make the solution very lengthy or even they may not prove the given equation.
So they should proceed in the same way as given in the solution.
All the identities used should be correct and accurate.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

