
Prove that; $$\dfrac{\cos \left( \pi -A\right) \cdot \cot \left( \dfrac{\pi }{2} +A\right) \cdot \cos \left( -A\right) }{\tan \left( \pi +A\right) \cdot \tan \left( \dfrac{3\pi }{2} +A\right) \cdot \sin \left( 2\pi -A\right) } =\cos \left(A\right) $$.
Answer
600k+ views
Hint: In this question a trigonometric equation is given, where we have to prove that LHS = RHS. So to find the solution we need to solve the left hand side of the equation. So while solving this we need some formulas, i.e,
1) $$\cos \left( \pi -\theta \right) =-\cos \theta$$
2) $$\cot \left( \dfrac{\pi }{2} +\theta \right) =-\tan \theta$$
3) $$\tan \left( \pi +\theta \right) =\tan \theta$$
4) $$\tan \left( \dfrac{3\pi }{2} +\theta \right) =-\cot \theta$$
5) $$\sin \left( 2\pi -\theta \right) =-\sin \theta$$
Complete step-by-step solution:
LHS,
$$\dfrac{\cos \left( \pi -A\right) \cdot \cot \left( \dfrac{\pi }{2} +A\right) \cdot \cos \left( -A\right) }{\tan \left( \pi +A\right) \cdot \tan \left( \dfrac{3\pi }{2} +A\right) \cdot \sin \left( 2\pi -A\right) }$$
$$= \dfrac{(-\cos A)\cdot (-\tan A)\cdot \cos A}{\tan A\cdot (-\cot A)\cdot(- \sin A)}$$[by using the above trigonometric formula]
$$= \dfrac{\cos A\cdot \tan A\cdot \cos A}{\tan A\cdot \cot A\cdot \sin A}$$
$$= \dfrac{\cos^{2} A}{\cot A\cdot \sin A}$$
$$= \dfrac{\cos^{2} A}{\left( \dfrac{\cos A}{\sin A} \right) \cdot \sin A}$$
$$= \dfrac{\cos^{2} A\cdot \sin A}{\cos A\cdot \sin A}$$=$$\cos \left( A\right) $$
$$= \cos A$$=RHS
Hence proved.
Note: While solving this type of question you need to know that basic formulas of trigonometry and also you have to know how the trigonometric functions changes with angles and the behaviour of a function in different angles, like the value of $\cos \left( \pi -\theta \right) $ gives $-\cos \theta$ but the value of $\sin \left( \pi -\theta \right) $ gives $\sin \theta$.
1) $$\cos \left( \pi -\theta \right) =-\cos \theta$$
2) $$\cot \left( \dfrac{\pi }{2} +\theta \right) =-\tan \theta$$
3) $$\tan \left( \pi +\theta \right) =\tan \theta$$
4) $$\tan \left( \dfrac{3\pi }{2} +\theta \right) =-\cot \theta$$
5) $$\sin \left( 2\pi -\theta \right) =-\sin \theta$$
Complete step-by-step solution:
LHS,
$$\dfrac{\cos \left( \pi -A\right) \cdot \cot \left( \dfrac{\pi }{2} +A\right) \cdot \cos \left( -A\right) }{\tan \left( \pi +A\right) \cdot \tan \left( \dfrac{3\pi }{2} +A\right) \cdot \sin \left( 2\pi -A\right) }$$
$$= \dfrac{(-\cos A)\cdot (-\tan A)\cdot \cos A}{\tan A\cdot (-\cot A)\cdot(- \sin A)}$$[by using the above trigonometric formula]
$$= \dfrac{\cos A\cdot \tan A\cdot \cos A}{\tan A\cdot \cot A\cdot \sin A}$$
$$= \dfrac{\cos^{2} A}{\cot A\cdot \sin A}$$
$$= \dfrac{\cos^{2} A}{\left( \dfrac{\cos A}{\sin A} \right) \cdot \sin A}$$
$$= \dfrac{\cos^{2} A\cdot \sin A}{\cos A\cdot \sin A}$$=$$\cos \left( A\right) $$
$$= \cos A$$=RHS
Hence proved.
Note: While solving this type of question you need to know that basic formulas of trigonometry and also you have to know how the trigonometric functions changes with angles and the behaviour of a function in different angles, like the value of $\cos \left( \pi -\theta \right) $ gives $-\cos \theta$ but the value of $\sin \left( \pi -\theta \right) $ gives $\sin \theta$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

