
Prove that \[\dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}}\].
Answer
564.9k+ views
Hint: We prove the equality of LHS to RHS by solving each side separately. Rationalize the fraction having secant and tangent in the denominator. Use the property of trigonometry i.e. \[1 + {\tan ^2}x = {\sec ^2}x\] to cancel out possible terms. Use the values of trigonometric functions in terms of sine and cosine to reach the final answer.
* Rationalizing a fraction is done by multiplying the fraction by a fraction that has both numerator and denominator as the term conjugate to the denominator of the given fraction.
Complete step by step answer:
We have to prove \[\dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}}\]
Solve LHS and RHS of the equation separately.
LHS:
Since, LHS of the equation is \[\dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}}\]
Rationalize the first fraction by multiplying both numerator and denominator by \[\sec x + \tan x\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{1}{{\sec x - \tan x}} \times \dfrac{{\sec x + \tan x}}{{\sec x + \tan x}} - \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{{(\sec x - \tan x)(\sec x + \tan x)}} - \dfrac{1}{{\cos x}}\]
Use the property \[(a - b)(a + b) = {a^2} - {b^2}\] to write the denominator of the first fraction
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}} - \dfrac{1}{{\cos x}}\]
Since, we know\[1 + {\tan ^2}x = {\sec ^2}x\].
Substitute the value of \[{\sec ^2}x\]in the denominator.
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{{1 + {{\tan }^2}x - {{\tan }^2}x}} - \dfrac{1}{{\cos x}}\]
Cancel the same terms in the denominator having opposite signs i.e. \[{\tan ^2}x\] and \[ - {\tan ^2}x\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{1} - \dfrac{1}{{\cos x}}\]
Substitute the value of second fraction using \[\dfrac{1}{{\cos x}} = \sec x\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \sec x + \tan x - \sec x\]
Cancel the same terms in the denominator having opposite signs i.e. \[\sec x\] and \[\sec x\].
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \tan x\] ………...… (1)
RHS:
Since, RHS of the equation is \[\dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}}\]
Rationalize the second fraction by multiplying both numerator and denominator by \[\sec x - \tan x\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{{(\sec x + \tan x)(\sec x - \tan x)}}\]
Use the property \[(a - b)(a + b) = {a^2} - {b^2}\] to write the denominator of the first fraction
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}\]
Since, we know\[1 + {\tan ^2}x = {\sec ^2}x\].
Substitute the value of \[{\sec ^2}x\]in the denominator.
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{{1 + {{\tan }^2}x - {{\tan }^2}x}}\]
Cancel the same terms in the denominator having opposite signs i.e. \[{\tan ^2}x\] and \[ - {\tan ^2}x\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{1}\]
Substitute the value of second fraction using \[\dfrac{1}{{\cos x}} = \sec x\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \sec x - (\sec x - \tan x)\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \sec x - \sec x + \tan x\]
Cancel the same terms in the denominator having opposite signs i.e. \[\sec x\] and \[\sec x\].
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \tan x\] ………….… (2)
From equations (1) and (2),
Values of LHS \[ = \tan x\] and of RHS\[ = \tan x\]
\[\therefore \] LHS \[ = \]RHS
Hence Proved.
Note:
Students might make the mistake of solving the LHS and RHS by taking LCM in the starting which will give us a complex solution. Also, many students cross multiply the fractions of both sides to solve the equation, but here we don’t have to solve the equation, we have to prove left hand side to right hand side.
* Rationalizing a fraction is done by multiplying the fraction by a fraction that has both numerator and denominator as the term conjugate to the denominator of the given fraction.
Complete step by step answer:
We have to prove \[\dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}}\]
Solve LHS and RHS of the equation separately.
LHS:
Since, LHS of the equation is \[\dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}}\]
Rationalize the first fraction by multiplying both numerator and denominator by \[\sec x + \tan x\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{1}{{\sec x - \tan x}} \times \dfrac{{\sec x + \tan x}}{{\sec x + \tan x}} - \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{{(\sec x - \tan x)(\sec x + \tan x)}} - \dfrac{1}{{\cos x}}\]
Use the property \[(a - b)(a + b) = {a^2} - {b^2}\] to write the denominator of the first fraction
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}} - \dfrac{1}{{\cos x}}\]
Since, we know\[1 + {\tan ^2}x = {\sec ^2}x\].
Substitute the value of \[{\sec ^2}x\]in the denominator.
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{{1 + {{\tan }^2}x - {{\tan }^2}x}} - \dfrac{1}{{\cos x}}\]
Cancel the same terms in the denominator having opposite signs i.e. \[{\tan ^2}x\] and \[ - {\tan ^2}x\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{1} - \dfrac{1}{{\cos x}}\]
Substitute the value of second fraction using \[\dfrac{1}{{\cos x}} = \sec x\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \sec x + \tan x - \sec x\]
Cancel the same terms in the denominator having opposite signs i.e. \[\sec x\] and \[\sec x\].
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \tan x\] ………...… (1)
RHS:
Since, RHS of the equation is \[\dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}}\]
Rationalize the second fraction by multiplying both numerator and denominator by \[\sec x - \tan x\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{{(\sec x + \tan x)(\sec x - \tan x)}}\]
Use the property \[(a - b)(a + b) = {a^2} - {b^2}\] to write the denominator of the first fraction
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}\]
Since, we know\[1 + {\tan ^2}x = {\sec ^2}x\].
Substitute the value of \[{\sec ^2}x\]in the denominator.
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{{1 + {{\tan }^2}x - {{\tan }^2}x}}\]
Cancel the same terms in the denominator having opposite signs i.e. \[{\tan ^2}x\] and \[ - {\tan ^2}x\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{1}\]
Substitute the value of second fraction using \[\dfrac{1}{{\cos x}} = \sec x\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \sec x - (\sec x - \tan x)\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \sec x - \sec x + \tan x\]
Cancel the same terms in the denominator having opposite signs i.e. \[\sec x\] and \[\sec x\].
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \tan x\] ………….… (2)
From equations (1) and (2),
Values of LHS \[ = \tan x\] and of RHS\[ = \tan x\]
\[\therefore \] LHS \[ = \]RHS
Hence Proved.
Note:
Students might make the mistake of solving the LHS and RHS by taking LCM in the starting which will give us a complex solution. Also, many students cross multiply the fractions of both sides to solve the equation, but here we don’t have to solve the equation, we have to prove left hand side to right hand side.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

Differentiate between Food chain and Food web class 10 biology CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

