
Prove that \[\dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}}\].
Answer
564.9k+ views
Hint: We prove the equality of LHS to RHS by solving each side separately. Rationalize the fraction having secant and tangent in the denominator. Use the property of trigonometry i.e. \[1 + {\tan ^2}x = {\sec ^2}x\] to cancel out possible terms. Use the values of trigonometric functions in terms of sine and cosine to reach the final answer.
* Rationalizing a fraction is done by multiplying the fraction by a fraction that has both numerator and denominator as the term conjugate to the denominator of the given fraction.
Complete step by step answer:
We have to prove \[\dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}}\]
Solve LHS and RHS of the equation separately.
LHS:
Since, LHS of the equation is \[\dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}}\]
Rationalize the first fraction by multiplying both numerator and denominator by \[\sec x + \tan x\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{1}{{\sec x - \tan x}} \times \dfrac{{\sec x + \tan x}}{{\sec x + \tan x}} - \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{{(\sec x - \tan x)(\sec x + \tan x)}} - \dfrac{1}{{\cos x}}\]
Use the property \[(a - b)(a + b) = {a^2} - {b^2}\] to write the denominator of the first fraction
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}} - \dfrac{1}{{\cos x}}\]
Since, we know\[1 + {\tan ^2}x = {\sec ^2}x\].
Substitute the value of \[{\sec ^2}x\]in the denominator.
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{{1 + {{\tan }^2}x - {{\tan }^2}x}} - \dfrac{1}{{\cos x}}\]
Cancel the same terms in the denominator having opposite signs i.e. \[{\tan ^2}x\] and \[ - {\tan ^2}x\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{1} - \dfrac{1}{{\cos x}}\]
Substitute the value of second fraction using \[\dfrac{1}{{\cos x}} = \sec x\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \sec x + \tan x - \sec x\]
Cancel the same terms in the denominator having opposite signs i.e. \[\sec x\] and \[\sec x\].
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \tan x\] ………...… (1)
RHS:
Since, RHS of the equation is \[\dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}}\]
Rationalize the second fraction by multiplying both numerator and denominator by \[\sec x - \tan x\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{{(\sec x + \tan x)(\sec x - \tan x)}}\]
Use the property \[(a - b)(a + b) = {a^2} - {b^2}\] to write the denominator of the first fraction
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}\]
Since, we know\[1 + {\tan ^2}x = {\sec ^2}x\].
Substitute the value of \[{\sec ^2}x\]in the denominator.
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{{1 + {{\tan }^2}x - {{\tan }^2}x}}\]
Cancel the same terms in the denominator having opposite signs i.e. \[{\tan ^2}x\] and \[ - {\tan ^2}x\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{1}\]
Substitute the value of second fraction using \[\dfrac{1}{{\cos x}} = \sec x\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \sec x - (\sec x - \tan x)\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \sec x - \sec x + \tan x\]
Cancel the same terms in the denominator having opposite signs i.e. \[\sec x\] and \[\sec x\].
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \tan x\] ………….… (2)
From equations (1) and (2),
Values of LHS \[ = \tan x\] and of RHS\[ = \tan x\]
\[\therefore \] LHS \[ = \]RHS
Hence Proved.
Note:
Students might make the mistake of solving the LHS and RHS by taking LCM in the starting which will give us a complex solution. Also, many students cross multiply the fractions of both sides to solve the equation, but here we don’t have to solve the equation, we have to prove left hand side to right hand side.
* Rationalizing a fraction is done by multiplying the fraction by a fraction that has both numerator and denominator as the term conjugate to the denominator of the given fraction.
Complete step by step answer:
We have to prove \[\dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}}\]
Solve LHS and RHS of the equation separately.
LHS:
Since, LHS of the equation is \[\dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}}\]
Rationalize the first fraction by multiplying both numerator and denominator by \[\sec x + \tan x\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{1}{{\sec x - \tan x}} \times \dfrac{{\sec x + \tan x}}{{\sec x + \tan x}} - \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{{(\sec x - \tan x)(\sec x + \tan x)}} - \dfrac{1}{{\cos x}}\]
Use the property \[(a - b)(a + b) = {a^2} - {b^2}\] to write the denominator of the first fraction
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}} - \dfrac{1}{{\cos x}}\]
Since, we know\[1 + {\tan ^2}x = {\sec ^2}x\].
Substitute the value of \[{\sec ^2}x\]in the denominator.
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{{1 + {{\tan }^2}x - {{\tan }^2}x}} - \dfrac{1}{{\cos x}}\]
Cancel the same terms in the denominator having opposite signs i.e. \[{\tan ^2}x\] and \[ - {\tan ^2}x\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \dfrac{{\sec x + \tan x}}{1} - \dfrac{1}{{\cos x}}\]
Substitute the value of second fraction using \[\dfrac{1}{{\cos x}} = \sec x\]
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \sec x + \tan x - \sec x\]
Cancel the same terms in the denominator having opposite signs i.e. \[\sec x\] and \[\sec x\].
\[ \Rightarrow \dfrac{1}{{\sec x - \tan x}} - \dfrac{1}{{\cos x}} = \tan x\] ………...… (1)
RHS:
Since, RHS of the equation is \[\dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}}\]
Rationalize the second fraction by multiplying both numerator and denominator by \[\sec x - \tan x\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} \times \dfrac{{\sec x - \tan x}}{{\sec x - \tan x}}\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{{(\sec x + \tan x)(\sec x - \tan x)}}\]
Use the property \[(a - b)(a + b) = {a^2} - {b^2}\] to write the denominator of the first fraction
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{{{{\sec }^2}x - {{\tan }^2}x}}\]
Since, we know\[1 + {\tan ^2}x = {\sec ^2}x\].
Substitute the value of \[{\sec ^2}x\]in the denominator.
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{{1 + {{\tan }^2}x - {{\tan }^2}x}}\]
Cancel the same terms in the denominator having opposite signs i.e. \[{\tan ^2}x\] and \[ - {\tan ^2}x\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \dfrac{1}{{\cos x}} - \dfrac{{\sec x - \tan x}}{1}\]
Substitute the value of second fraction using \[\dfrac{1}{{\cos x}} = \sec x\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \sec x - (\sec x - \tan x)\]
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \sec x - \sec x + \tan x\]
Cancel the same terms in the denominator having opposite signs i.e. \[\sec x\] and \[\sec x\].
\[ \Rightarrow \dfrac{1}{{\cos x}} - \dfrac{1}{{\sec x + \tan x}} = \tan x\] ………….… (2)
From equations (1) and (2),
Values of LHS \[ = \tan x\] and of RHS\[ = \tan x\]
\[\therefore \] LHS \[ = \]RHS
Hence Proved.
Note:
Students might make the mistake of solving the LHS and RHS by taking LCM in the starting which will give us a complex solution. Also, many students cross multiply the fractions of both sides to solve the equation, but here we don’t have to solve the equation, we have to prove left hand side to right hand side.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

