Prove that: \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}.\]
Answer
Verified
479.1k+ views
Hint: To prove this, we simplify the both sides separately by writing all trigonometric ratios in terms of $\sin A$ and $\cos A$, then rationalize the term in the fraction which has complex denominator and solve to simplest form. We show that both sides give the same values.
* \[\csc A = \dfrac{1}{{\sin A}};\cot A = \dfrac{{\cos A}}{{\sin A}}\]
Complete step-by-step answer:
First we solve the LHS of the equation.
Write all trigonometric ratios in \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}}\] in terms of $\sin A$ and $\cos A$.
\[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\dfrac{1}{{\sin A}} - \dfrac{{\cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}\]
Taking LCM in the denominator of the first fraction.
\[ = \dfrac{1}{{\dfrac{{1 - \cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}\]
\[ = \dfrac{{\sin A}}{{1 - \cos A}} - \dfrac{1}{{\sin A}}\]
Now we rationalize the first fraction by multiplying both numerator and denominator by \[(1 + \cos \theta )\].
\[ = \dfrac{{\sin A}}{{1 - \cos A}} \times \dfrac{{1 + \cos A}}{{1 + \cos A}} - \dfrac{1}{{\sin A}}\]
\[ = \dfrac{{\sin A(1 + \cos A)}}{{(1 + \cos A)(1 - \cos A)}} - \dfrac{1}{{\sin A}}\]
Now we know from the property that \[(a + b)(a - b) = {a^2} - {b^2}\]
Using the formula solve denominator of first fraction where \[a = 1,b = \cos A\]
\[ = \dfrac{{\sin A(1 + \cos A)}}{{(1 - {{\cos }^2}A)}} - \dfrac{1}{{\sin A}}\]
Now from the property \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] we can write \[1 - {\cos ^2}\theta = {\sin ^2}\theta \]
So, we substitute the value of \[1 - {\cos ^2}A = {\sin ^2}A\] in the denominator of the first fraction.
\[ = \dfrac{{\sin A(1 + \cos A)}}{{{{\sin }^2}A}} - \dfrac{1}{{\sin A}}\]
Cancel out the same factors from numerator and denominator.
\[ = \dfrac{{(1 + \cos A)}}{{\sin A}} - \dfrac{1}{{\sin A}}\]
Taking LCM of both the fractions.
\[
= \dfrac{{1 + \cos A - 1}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\
\]
\[ = \cot A\] {since \[\cot A = \dfrac{{\cos A}}{{\sin A}}\] }
\[ \Rightarrow \dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \cot A\] $...(1)$
Now we solve the RHS of the equation.
Write all trigonometric ratios in \[\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}\] in terms of $\sin A$ and $\cos A$.
\[\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}}}\]
Take LCM in the denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{{1 + \cos A}}{{\sin A}}}}$
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}}$
Now we rationalize the second fraction by multiplying both numerator and denominator by \[(1 - \cos A)\]
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}} \times \dfrac{{1 - \cos A}}{{1 - \cos A}}$
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{(1 - \cos A)(1 + \cos A)}}$
Now we know from the property that \[(a + b)(a - b) = {a^2} - {b^2}\]
Using the formula solve denominator of second fraction where \[a = 1,b = \cos A\]
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{1 - {{\cos }^2}A}}$
Now from the property \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] we can write \[1 - {\cos ^2}\theta = {\sin ^2}\theta \]
So, we substitute the value of \[1 - {\cos ^2}A = {\sin ^2}A\] in the denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{{{\sin }^2}A}}$
Cancel out factors from the numerator and denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{{(1 - \cos A)}}{{\sin A}}$
Taking LCM of both fractions.
$
= \dfrac{{1 - 1 + \cos A}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\
$
\[ = \cot A\] {since \[\cot A = \dfrac{{\cos A}}{{\sin A}}\] }
\[ \Rightarrow \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \cot A\] $...(2)$
Now we check if LHS is equal to RHS
Equating values of $\cot A$ from equation $(1)$ and $(2)$ we get
\[\cot A = \cot A\]
LHS = RHS
Hence, \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}.\]
Note: Students make mistakes of rationalizing with wrong factors, keep in mind we multiply with such a term that makes our denominator easy.
Many students make the mistake of solving the question without converting into sin and cos, which makes our solution complex.
* \[\csc A = \dfrac{1}{{\sin A}};\cot A = \dfrac{{\cos A}}{{\sin A}}\]
Complete step-by-step answer:
First we solve the LHS of the equation.
Write all trigonometric ratios in \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}}\] in terms of $\sin A$ and $\cos A$.
\[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\dfrac{1}{{\sin A}} - \dfrac{{\cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}\]
Taking LCM in the denominator of the first fraction.
\[ = \dfrac{1}{{\dfrac{{1 - \cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}\]
\[ = \dfrac{{\sin A}}{{1 - \cos A}} - \dfrac{1}{{\sin A}}\]
Now we rationalize the first fraction by multiplying both numerator and denominator by \[(1 + \cos \theta )\].
\[ = \dfrac{{\sin A}}{{1 - \cos A}} \times \dfrac{{1 + \cos A}}{{1 + \cos A}} - \dfrac{1}{{\sin A}}\]
\[ = \dfrac{{\sin A(1 + \cos A)}}{{(1 + \cos A)(1 - \cos A)}} - \dfrac{1}{{\sin A}}\]
Now we know from the property that \[(a + b)(a - b) = {a^2} - {b^2}\]
Using the formula solve denominator of first fraction where \[a = 1,b = \cos A\]
\[ = \dfrac{{\sin A(1 + \cos A)}}{{(1 - {{\cos }^2}A)}} - \dfrac{1}{{\sin A}}\]
Now from the property \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] we can write \[1 - {\cos ^2}\theta = {\sin ^2}\theta \]
So, we substitute the value of \[1 - {\cos ^2}A = {\sin ^2}A\] in the denominator of the first fraction.
\[ = \dfrac{{\sin A(1 + \cos A)}}{{{{\sin }^2}A}} - \dfrac{1}{{\sin A}}\]
Cancel out the same factors from numerator and denominator.
\[ = \dfrac{{(1 + \cos A)}}{{\sin A}} - \dfrac{1}{{\sin A}}\]
Taking LCM of both the fractions.
\[
= \dfrac{{1 + \cos A - 1}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\
\]
\[ = \cot A\] {since \[\cot A = \dfrac{{\cos A}}{{\sin A}}\] }
\[ \Rightarrow \dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \cot A\] $...(1)$
Now we solve the RHS of the equation.
Write all trigonometric ratios in \[\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}\] in terms of $\sin A$ and $\cos A$.
\[\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}}}\]
Take LCM in the denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{{1 + \cos A}}{{\sin A}}}}$
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}}$
Now we rationalize the second fraction by multiplying both numerator and denominator by \[(1 - \cos A)\]
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}} \times \dfrac{{1 - \cos A}}{{1 - \cos A}}$
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{(1 - \cos A)(1 + \cos A)}}$
Now we know from the property that \[(a + b)(a - b) = {a^2} - {b^2}\]
Using the formula solve denominator of second fraction where \[a = 1,b = \cos A\]
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{1 - {{\cos }^2}A}}$
Now from the property \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] we can write \[1 - {\cos ^2}\theta = {\sin ^2}\theta \]
So, we substitute the value of \[1 - {\cos ^2}A = {\sin ^2}A\] in the denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{{{\sin }^2}A}}$
Cancel out factors from the numerator and denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{{(1 - \cos A)}}{{\sin A}}$
Taking LCM of both fractions.
$
= \dfrac{{1 - 1 + \cos A}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\
$
\[ = \cot A\] {since \[\cot A = \dfrac{{\cos A}}{{\sin A}}\] }
\[ \Rightarrow \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \cot A\] $...(2)$
Now we check if LHS is equal to RHS
Equating values of $\cot A$ from equation $(1)$ and $(2)$ we get
\[\cot A = \cot A\]
LHS = RHS
Hence, \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}.\]
Note: Students make mistakes of rationalizing with wrong factors, keep in mind we multiply with such a term that makes our denominator easy.
Many students make the mistake of solving the question without converting into sin and cos, which makes our solution complex.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE