Answer
Verified
440.4k+ views
Hint: To prove this, we simplify the both sides separately by writing all trigonometric ratios in terms of $\sin A$ and $\cos A$, then rationalize the term in the fraction which has complex denominator and solve to simplest form. We show that both sides give the same values.
* \[\csc A = \dfrac{1}{{\sin A}};\cot A = \dfrac{{\cos A}}{{\sin A}}\]
Complete step-by-step answer:
First we solve the LHS of the equation.
Write all trigonometric ratios in \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}}\] in terms of $\sin A$ and $\cos A$.
\[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\dfrac{1}{{\sin A}} - \dfrac{{\cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}\]
Taking LCM in the denominator of the first fraction.
\[ = \dfrac{1}{{\dfrac{{1 - \cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}\]
\[ = \dfrac{{\sin A}}{{1 - \cos A}} - \dfrac{1}{{\sin A}}\]
Now we rationalize the first fraction by multiplying both numerator and denominator by \[(1 + \cos \theta )\].
\[ = \dfrac{{\sin A}}{{1 - \cos A}} \times \dfrac{{1 + \cos A}}{{1 + \cos A}} - \dfrac{1}{{\sin A}}\]
\[ = \dfrac{{\sin A(1 + \cos A)}}{{(1 + \cos A)(1 - \cos A)}} - \dfrac{1}{{\sin A}}\]
Now we know from the property that \[(a + b)(a - b) = {a^2} - {b^2}\]
Using the formula solve denominator of first fraction where \[a = 1,b = \cos A\]
\[ = \dfrac{{\sin A(1 + \cos A)}}{{(1 - {{\cos }^2}A)}} - \dfrac{1}{{\sin A}}\]
Now from the property \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] we can write \[1 - {\cos ^2}\theta = {\sin ^2}\theta \]
So, we substitute the value of \[1 - {\cos ^2}A = {\sin ^2}A\] in the denominator of the first fraction.
\[ = \dfrac{{\sin A(1 + \cos A)}}{{{{\sin }^2}A}} - \dfrac{1}{{\sin A}}\]
Cancel out the same factors from numerator and denominator.
\[ = \dfrac{{(1 + \cos A)}}{{\sin A}} - \dfrac{1}{{\sin A}}\]
Taking LCM of both the fractions.
\[
= \dfrac{{1 + \cos A - 1}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\
\]
\[ = \cot A\] {since \[\cot A = \dfrac{{\cos A}}{{\sin A}}\] }
\[ \Rightarrow \dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \cot A\] $...(1)$
Now we solve the RHS of the equation.
Write all trigonometric ratios in \[\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}\] in terms of $\sin A$ and $\cos A$.
\[\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}}}\]
Take LCM in the denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{{1 + \cos A}}{{\sin A}}}}$
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}}$
Now we rationalize the second fraction by multiplying both numerator and denominator by \[(1 - \cos A)\]
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}} \times \dfrac{{1 - \cos A}}{{1 - \cos A}}$
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{(1 - \cos A)(1 + \cos A)}}$
Now we know from the property that \[(a + b)(a - b) = {a^2} - {b^2}\]
Using the formula solve denominator of second fraction where \[a = 1,b = \cos A\]
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{1 - {{\cos }^2}A}}$
Now from the property \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] we can write \[1 - {\cos ^2}\theta = {\sin ^2}\theta \]
So, we substitute the value of \[1 - {\cos ^2}A = {\sin ^2}A\] in the denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{{{\sin }^2}A}}$
Cancel out factors from the numerator and denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{{(1 - \cos A)}}{{\sin A}}$
Taking LCM of both fractions.
$
= \dfrac{{1 - 1 + \cos A}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\
$
\[ = \cot A\] {since \[\cot A = \dfrac{{\cos A}}{{\sin A}}\] }
\[ \Rightarrow \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \cot A\] $...(2)$
Now we check if LHS is equal to RHS
Equating values of $\cot A$ from equation $(1)$ and $(2)$ we get
\[\cot A = \cot A\]
LHS = RHS
Hence, \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}.\]
Note: Students make mistakes of rationalizing with wrong factors, keep in mind we multiply with such a term that makes our denominator easy.
Many students make the mistake of solving the question without converting into sin and cos, which makes our solution complex.
* \[\csc A = \dfrac{1}{{\sin A}};\cot A = \dfrac{{\cos A}}{{\sin A}}\]
Complete step-by-step answer:
First we solve the LHS of the equation.
Write all trigonometric ratios in \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}}\] in terms of $\sin A$ and $\cos A$.
\[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\dfrac{1}{{\sin A}} - \dfrac{{\cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}\]
Taking LCM in the denominator of the first fraction.
\[ = \dfrac{1}{{\dfrac{{1 - \cos A}}{{\sin A}}}} - \dfrac{1}{{\sin A}}\]
\[ = \dfrac{{\sin A}}{{1 - \cos A}} - \dfrac{1}{{\sin A}}\]
Now we rationalize the first fraction by multiplying both numerator and denominator by \[(1 + \cos \theta )\].
\[ = \dfrac{{\sin A}}{{1 - \cos A}} \times \dfrac{{1 + \cos A}}{{1 + \cos A}} - \dfrac{1}{{\sin A}}\]
\[ = \dfrac{{\sin A(1 + \cos A)}}{{(1 + \cos A)(1 - \cos A)}} - \dfrac{1}{{\sin A}}\]
Now we know from the property that \[(a + b)(a - b) = {a^2} - {b^2}\]
Using the formula solve denominator of first fraction where \[a = 1,b = \cos A\]
\[ = \dfrac{{\sin A(1 + \cos A)}}{{(1 - {{\cos }^2}A)}} - \dfrac{1}{{\sin A}}\]
Now from the property \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] we can write \[1 - {\cos ^2}\theta = {\sin ^2}\theta \]
So, we substitute the value of \[1 - {\cos ^2}A = {\sin ^2}A\] in the denominator of the first fraction.
\[ = \dfrac{{\sin A(1 + \cos A)}}{{{{\sin }^2}A}} - \dfrac{1}{{\sin A}}\]
Cancel out the same factors from numerator and denominator.
\[ = \dfrac{{(1 + \cos A)}}{{\sin A}} - \dfrac{1}{{\sin A}}\]
Taking LCM of both the fractions.
\[
= \dfrac{{1 + \cos A - 1}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\
\]
\[ = \cot A\] {since \[\cot A = \dfrac{{\cos A}}{{\sin A}}\] }
\[ \Rightarrow \dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \cot A\] $...(1)$
Now we solve the RHS of the equation.
Write all trigonometric ratios in \[\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}\] in terms of $\sin A$ and $\cos A$.
\[\dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{1}{{\sin A}} + \dfrac{{\cos A}}{{\sin A}}}}\]
Take LCM in the denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{1}{{\dfrac{{1 + \cos A}}{{\sin A}}}}$
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}}$
Now we rationalize the second fraction by multiplying both numerator and denominator by \[(1 - \cos A)\]
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A}}{{1 + \cos A}} \times \dfrac{{1 - \cos A}}{{1 - \cos A}}$
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{(1 - \cos A)(1 + \cos A)}}$
Now we know from the property that \[(a + b)(a - b) = {a^2} - {b^2}\]
Using the formula solve denominator of second fraction where \[a = 1,b = \cos A\]
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{1 - {{\cos }^2}A}}$
Now from the property \[{\sin ^2}\theta + {\cos ^2}\theta = 1\] we can write \[1 - {\cos ^2}\theta = {\sin ^2}\theta \]
So, we substitute the value of \[1 - {\cos ^2}A = {\sin ^2}A\] in the denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{{\sin A(1 - \cos A)}}{{{{\sin }^2}A}}$
Cancel out factors from the numerator and denominator of the second fraction.
$ = \dfrac{1}{{\sin A}} - \dfrac{{(1 - \cos A)}}{{\sin A}}$
Taking LCM of both fractions.
$
= \dfrac{{1 - 1 + \cos A}}{{\sin A}} \\
= \dfrac{{\cos A}}{{\sin A}} \\
$
\[ = \cot A\] {since \[\cot A = \dfrac{{\cos A}}{{\sin A}}\] }
\[ \Rightarrow \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}} = \cot A\] $...(2)$
Now we check if LHS is equal to RHS
Equating values of $\cot A$ from equation $(1)$ and $(2)$ we get
\[\cot A = \cot A\]
LHS = RHS
Hence, \[\dfrac{1}{{\csc A - \cot A}} - \dfrac{1}{{\sin A}} = \dfrac{1}{{\sin A}} - \dfrac{1}{{\csc A + \cot A}}.\]
Note: Students make mistakes of rationalizing with wrong factors, keep in mind we multiply with such a term that makes our denominator easy.
Many students make the mistake of solving the question without converting into sin and cos, which makes our solution complex.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE