
Prove that:
$ \cot 4x\left( {\sin 5x + \sin 3x} \right) = \cot x\left( {\sin 5x - \sin 3x} \right) $
Answer
484.2k+ views
Hint: To prove required results we consider both sides of a given trigonometric equation. We first take left hand side of equation and then simplifying it by using trigonometric ratio and trigonometric identities and then we take right hand side and then simplifying it by using same concept and we that both sides on simplification gives out same result and hence we can say that left and right side of given equation are also equal.
Formulas used: $ \sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right),\,\,\sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right) $
Complete step-by-step answer:
To prove the required result we will solve or simplify both sides of the given trigonometric equation.
Considering the left hand side of the given equation. We have,
$ \cot 4x\left( {\sin 5x + \sin 3x} \right) $
Applying trigonometric identity on bracket part. We have,
$
\cot 4x\left[ {2\sin \left( {\dfrac{{5x + 3x}}{2}} \right)\cos \left( {\dfrac{{5x - 3x}}{2}} \right)} \right] \\
\Rightarrow \cot 4x\left( {2\sin 4x\cos x} \right) \\
\Rightarrow \dfrac{{\cos 4x}}{{\sin 4x}}\left( {2\sin 4x\cos x} \right) \\
\Rightarrow \dfrac{{\cos 4x}}{{\sin 4x}} \times 2\sin 4x.\cos x \\
\Rightarrow 2\cos 4x\cos x \\
or\,\,we\,\,write \\
\cot 4x\left( {\sin 5x + \sin 3x} \right) = 2\cos 4x\cos x............(i) \;
$
Now, consider the right hand side of the given trigonometric equation. We have,
$ \cot x\left( {\sin 5x - \sin 3x} \right) $
Applying trigonometric identity on bracket part. We have,
$
\cot x\left[ {2\cos \left( {\dfrac{{5x + 3x}}{2}} \right)\sin \left( {\dfrac{{5x - 3x}}{2}} \right)} \right] \\
\Rightarrow \cot x\left( {2\cos 4x\sin x} \right) \\
\Rightarrow \dfrac{{\cos x}}{{\sin x}}\left( {2\cos 4x\sin x} \right) \\
\Rightarrow \dfrac{{\cos x}}{{\sin x}} \times 2\cos 4x\sin x \\
\Rightarrow 2\cos x\cos 4x \\
or\,\,we\,\,write \\
\cot x\left( {\sin 5x - \sin 3x} \right) = 2\cos x\cos 4x............(ii) \;
$
Therefore, from equation (i) and (ii) we see that the right hand side of both are the same.
Hence, their left hand side will also be equal.
So, we have
$ \cot 4x\left( {\sin 5x + \sin 3x} \right) = \cot x\left( {\sin 5x - \sin 3x} \right) $
Hence, the required proof.
Note: For this type of problems in which angles of trigonometric terms are different on the left side as well as on the right hand side. So, we have to solve or simplify both sides by using identities and then from these equal results we can also say that the left and right side of a given equation is also equal.
Formulas used: $ \sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right),\,\,\sin C - \sin D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{C - D}}{2}} \right) $
Complete step-by-step answer:
To prove the required result we will solve or simplify both sides of the given trigonometric equation.
Considering the left hand side of the given equation. We have,
$ \cot 4x\left( {\sin 5x + \sin 3x} \right) $
Applying trigonometric identity on bracket part. We have,
$
\cot 4x\left[ {2\sin \left( {\dfrac{{5x + 3x}}{2}} \right)\cos \left( {\dfrac{{5x - 3x}}{2}} \right)} \right] \\
\Rightarrow \cot 4x\left( {2\sin 4x\cos x} \right) \\
\Rightarrow \dfrac{{\cos 4x}}{{\sin 4x}}\left( {2\sin 4x\cos x} \right) \\
\Rightarrow \dfrac{{\cos 4x}}{{\sin 4x}} \times 2\sin 4x.\cos x \\
\Rightarrow 2\cos 4x\cos x \\
or\,\,we\,\,write \\
\cot 4x\left( {\sin 5x + \sin 3x} \right) = 2\cos 4x\cos x............(i) \;
$
Now, consider the right hand side of the given trigonometric equation. We have,
$ \cot x\left( {\sin 5x - \sin 3x} \right) $
Applying trigonometric identity on bracket part. We have,
$
\cot x\left[ {2\cos \left( {\dfrac{{5x + 3x}}{2}} \right)\sin \left( {\dfrac{{5x - 3x}}{2}} \right)} \right] \\
\Rightarrow \cot x\left( {2\cos 4x\sin x} \right) \\
\Rightarrow \dfrac{{\cos x}}{{\sin x}}\left( {2\cos 4x\sin x} \right) \\
\Rightarrow \dfrac{{\cos x}}{{\sin x}} \times 2\cos 4x\sin x \\
\Rightarrow 2\cos x\cos 4x \\
or\,\,we\,\,write \\
\cot x\left( {\sin 5x - \sin 3x} \right) = 2\cos x\cos 4x............(ii) \;
$
Therefore, from equation (i) and (ii) we see that the right hand side of both are the same.
Hence, their left hand side will also be equal.
So, we have
$ \cot 4x\left( {\sin 5x + \sin 3x} \right) = \cot x\left( {\sin 5x - \sin 3x} \right) $
Hence, the required proof.
Note: For this type of problems in which angles of trigonometric terms are different on the left side as well as on the right hand side. So, we have to solve or simplify both sides by using identities and then from these equal results we can also say that the left and right side of a given equation is also equal.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
