
Prove that:
${(\cos x - \cos y)^2} + {(\sin x - \sin y)^2} = 4{\sin ^2}\left( {\dfrac{{x - y}}{2}} \right)$
Answer
576.3k+ views
Hint: For a question like this we approach the solution by simplifying any one side and proving it equal to the other side, here also we’ll simplify the left-hand side using some trigonometric formulas like
$1 - \cos 2\theta = 2{\cos ^2}\theta $
$\cos A\cos B + \sin A\sin B = \cos (A - B)$
${\cos ^2}\theta + {\sin ^2}\theta = 1$
We simplify in such a manner that it results in equivalent value to the other side expression.
Complete step by step Answer:
Given data:${(\cos x - \cos y)^2} + {(\sin x - \sin y)^2} = 4{\sin ^2}\left( {\dfrac{{x - y}}{2}} \right)$
Taking the left-hand side
$ \Rightarrow {(\cos x - \cos y)^2} + {(\sin x - \sin y)^2}$
Using ${(a - b)^2} = {a^2} + {b^2} - 2ab$,
$ \Rightarrow {\cos ^2}x + {\cos ^2}y - 2\cos x\cos y + {\sin ^2}x + {\sin ^2}y - 2\sin x\sin y$
On rearranging we get,
$ \Rightarrow {\cos ^2}x + {\sin ^2}x + {\cos ^2}y + {\sin ^2}x - 2\cos x\cos y - 2\sin x\sin y$
Now, using $co{s^2}\theta + {\sin ^2}\theta = 1$, we get,
$ \Rightarrow 1 + 1 - 2\cos x\cos y - 2\sin x\sin y$
On simplification we get,
$ \Rightarrow 2 - 2\cos x\cos y - 2\sin x\sin y$
From the last two terms,
$ \Rightarrow 2 - 2(\cos x\cos y + \sin x\sin y)$
Using $\cos A\cos B + \sin A\sin B = \cos (A - B)$, we get,
$ \Rightarrow 2 - 2\cos (x - y)$
Taking 2 common,
$ \Rightarrow 2[1 - \cos (x - y)]$
Now, using formula $1 - \cos 2\theta = 2{\cos ^2}\theta $, we get,
$ \Rightarrow 2\left[ {2{{\cos }^2}\left( {\dfrac{{x - y}}{2}} \right)} \right]$
Now, simplifying the brackets
$ \Rightarrow 4{\cos ^2}\left( {\dfrac{{x - y}}{2}} \right)$, which is equal to the right-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation
Note: An alternative method for the solution of the given question can be
This time we’ll simplify the term in the right-hand side and will prove it equal to the term in the left-hand side
$ \Rightarrow 4{\cos ^2}\left( {\dfrac{{x - y}}{2}} \right)$
Using the formula,$2{\cos ^2}\theta = 1 - \cos 2\theta $
$ \Rightarrow 2[1 - \cos (x - y)]$
Now, using $\cos (A - B) = \cos A\cos B + \sin A\sin B$
$ \Rightarrow 2[1 - (\cos x\cos y + \sin x\sin y)]$
On simplifying the brackets
$ \Rightarrow 2 - 2(\cos x\cos y + \sin x\sin y)$
$ \Rightarrow 2 - 2\cos x\cos y - 2\sin x\sin y$
$ \Rightarrow 1 + 1 - 2\cos x\cos y - 2\sin x\sin y$
Now, we know that $co{s^2}\theta + {\sin ^2}\theta = 1$
therefore substituting \[1 = co{s^2}x + {\sin ^2}x\]and $1 = co{s^2}y + {\sin ^2}y$
$ \Rightarrow {\cos ^2}x + {\sin ^2}x + {\cos ^2}y + {\sin ^2}y - 2\cos x\cos y - 2\sin x\sin y$
$ \Rightarrow {\cos ^2}x + {\cos ^2}y - 2\cos x\cos y + {\sin ^2}x + {\sin ^2}y - 2\sin x\sin y$
Now, using the formula ${a^2} + {b^2} - 2ab = {(a - b)^2}$
\[ \Rightarrow {\left( {\cos x - \cos y} \right)^2} + {\left( {\sin x - \sin y} \right)^2}\]which is equal to the left-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation
$1 - \cos 2\theta = 2{\cos ^2}\theta $
$\cos A\cos B + \sin A\sin B = \cos (A - B)$
${\cos ^2}\theta + {\sin ^2}\theta = 1$
We simplify in such a manner that it results in equivalent value to the other side expression.
Complete step by step Answer:
Given data:${(\cos x - \cos y)^2} + {(\sin x - \sin y)^2} = 4{\sin ^2}\left( {\dfrac{{x - y}}{2}} \right)$
Taking the left-hand side
$ \Rightarrow {(\cos x - \cos y)^2} + {(\sin x - \sin y)^2}$
Using ${(a - b)^2} = {a^2} + {b^2} - 2ab$,
$ \Rightarrow {\cos ^2}x + {\cos ^2}y - 2\cos x\cos y + {\sin ^2}x + {\sin ^2}y - 2\sin x\sin y$
On rearranging we get,
$ \Rightarrow {\cos ^2}x + {\sin ^2}x + {\cos ^2}y + {\sin ^2}x - 2\cos x\cos y - 2\sin x\sin y$
Now, using $co{s^2}\theta + {\sin ^2}\theta = 1$, we get,
$ \Rightarrow 1 + 1 - 2\cos x\cos y - 2\sin x\sin y$
On simplification we get,
$ \Rightarrow 2 - 2\cos x\cos y - 2\sin x\sin y$
From the last two terms,
$ \Rightarrow 2 - 2(\cos x\cos y + \sin x\sin y)$
Using $\cos A\cos B + \sin A\sin B = \cos (A - B)$, we get,
$ \Rightarrow 2 - 2\cos (x - y)$
Taking 2 common,
$ \Rightarrow 2[1 - \cos (x - y)]$
Now, using formula $1 - \cos 2\theta = 2{\cos ^2}\theta $, we get,
$ \Rightarrow 2\left[ {2{{\cos }^2}\left( {\dfrac{{x - y}}{2}} \right)} \right]$
Now, simplifying the brackets
$ \Rightarrow 4{\cos ^2}\left( {\dfrac{{x - y}}{2}} \right)$, which is equal to the right-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation
Note: An alternative method for the solution of the given question can be
This time we’ll simplify the term in the right-hand side and will prove it equal to the term in the left-hand side
$ \Rightarrow 4{\cos ^2}\left( {\dfrac{{x - y}}{2}} \right)$
Using the formula,$2{\cos ^2}\theta = 1 - \cos 2\theta $
$ \Rightarrow 2[1 - \cos (x - y)]$
Now, using $\cos (A - B) = \cos A\cos B + \sin A\sin B$
$ \Rightarrow 2[1 - (\cos x\cos y + \sin x\sin y)]$
On simplifying the brackets
$ \Rightarrow 2 - 2(\cos x\cos y + \sin x\sin y)$
$ \Rightarrow 2 - 2\cos x\cos y - 2\sin x\sin y$
$ \Rightarrow 1 + 1 - 2\cos x\cos y - 2\sin x\sin y$
Now, we know that $co{s^2}\theta + {\sin ^2}\theta = 1$
therefore substituting \[1 = co{s^2}x + {\sin ^2}x\]and $1 = co{s^2}y + {\sin ^2}y$
$ \Rightarrow {\cos ^2}x + {\sin ^2}x + {\cos ^2}y + {\sin ^2}y - 2\cos x\cos y - 2\sin x\sin y$
$ \Rightarrow {\cos ^2}x + {\cos ^2}y - 2\cos x\cos y + {\sin ^2}x + {\sin ^2}y - 2\sin x\sin y$
Now, using the formula ${a^2} + {b^2} - 2ab = {(a - b)^2}$
\[ \Rightarrow {\left( {\cos x - \cos y} \right)^2} + {\left( {\sin x - \sin y} \right)^2}\]which is equal to the left-hand side in the given equation
Since, Left-hand side=right-hand side
We have proved the given equation
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

