
Prove that \[\cos ({570^ \circ })\sin ({510^ \circ }) + \sin ( - {330^ \circ })\cos ( - {390^ \circ }) = 0\]
Answer
582.6k+ views
Hint: We break the angle values inside the bracket in such a way so we can relate to the quadrants in the plane and write the values for the question in a simpler way. Try to break the values as adding or subtracting from \[{360^ \circ },{180^ \circ }\]and relate to the quadrant diagram.
* We know the values of all trigonometric angles are positive in the first quadrant.
Values of only \[\sin \theta \] are positive in the second quadrant.
Values of only \[\tan \theta \] are positive in the third quadrant.
Values of only\[\cos \theta \] are positive in the fourth quadrant.
Complete step-by-step answer:
We solve for all the trigonometric terms separately.
For better understanding we draw the quadrant division
Firstly we solve for \[\cos ({570^ \circ })\]
We can write
\[\cos ({570^ \circ }) = \cos ({360^ \circ } + {210^ \circ })\]
Since \[{360^ \circ } + \] goes to the first quadrant where all trigonometric angles are positive
\[ \Rightarrow \cos ({360^ \circ } + {210^ \circ }) = \cos ({210^ \circ })\]
Now we can write
\[\cos ({210^ \circ }) = \cos ({180^ \circ } + {30^ \circ })\]
Since \[{180^ \circ } + \] goes to the third quadrant where all \[\tan \] angles are positive, so all \[\cos \] angles are negative.
\[ \Rightarrow \cos ({180^ \circ } + {30^ \circ }) = - \cos ({30^ \circ }) = \dfrac{{ - \sqrt 3 }}{2}\]
So, \[\cos ({570^ \circ }) = \dfrac{{ - \sqrt 3 }}{2}\] … (1)
Now we solve for \[\sin ({510^ \circ })\]
We can write
\[\sin ({510^ \circ }) = \sin ({360^ \circ } + {150^ \circ })\]
Since \[{360^ \circ } + \] goes to the first quadrant where all trigonometric angles are positive
\[ \Rightarrow \sin ({360^ \circ } + {150^ \circ }) = \sin ({150^ \circ })\]
Now we can write
\[\sin ({150^ \circ }) = \sin ({180^ \circ } - {30^ \circ })\]
Since \[{180^ \circ } - \] goes to the second quadrant where all \[\sin \] angles are positive.
\[ \Rightarrow \sin ({180^ \circ } - {30^ \circ }) = \sin ({30^ \circ }) = \dfrac{1}{2}\]
So, \[\sin ({510^ \circ }) = \dfrac{1}{2}\] … (2)
Now we solve for \[\sin ( - {330^ \circ })\]
Since, \[\sin \] is an odd function therefore, \[\sin ( - \theta ) = - \sin \theta \]
\[ \Rightarrow \sin ( - {330^ \circ }) = - \sin ({330^ \circ })\]
We can write
\[ - \sin ({330^ \circ }) = - \sin ({360^ \circ } - {30^ \circ })\]
Since \[{360^ \circ } - \] goes to the fourth quadrant where all \[\cos \] angles are only positive.
\[ \Rightarrow - \sin ({360^ \circ } - {30^ \circ }) = - \sin ( - {30^ \circ })\]
Since, \[\sin \] is an odd function therefore, \[\sin ( - \theta ) = - \sin \theta \]
\[ \Rightarrow - \sin ({360^ \circ } - {30^ \circ }) = \sin ({30^ \circ }) = \dfrac{1}{2}\]
So, \[\sin ({-330^ \circ }) = \dfrac{1}{2}\] … (3)
Now we solve for \[\cos ( - {390^ \circ })\]
Since, \[\cos \] is an even function therefore, \[\cos ( - \theta ) = \cos \theta \]
\[ \Rightarrow \cos ( - {390^ \circ }) = \cos ({390^ \circ })\]
We can write
\[\cos ({390^ \circ }) = \cos ({360^ \circ } + {30^ \circ })\]
Since \[{360^ \circ } + \] goes to the first quadrant where all trigonometric angles are positive
\[ \Rightarrow \cos ({360^ \circ } + {30^ \circ }) = \cos ({30^ \circ }) = \dfrac{{\sqrt 3 }}{2}\]
So, \[\cos ( - {390^ \circ }) = \dfrac{{\sqrt 3 }}{2}\] … (4)
Substitute values from equation (1), (2), (3) and (4) in the following equation
\[\cos ({570^ \circ })\sin ({510^ \circ }) + \sin ( - {330^ \circ })\cos ( - {390^ \circ }) = 0\]
\[
\dfrac{{ - \sqrt 3 }}{2} \times \dfrac{1}{2} + \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2} = 0 \\
\dfrac{{ - \sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4} = 0 \\
0 = 0 \\
\]
Therefore, LHS=RHS
Hence Proved
Note: Students can many times make mistakes when the angle between the brackets is negative, so always check first if the trigonometric function alone is an even or odd function. An odd function brings out the negative sign while an even function eradicates the negative sign.
* We know the values of all trigonometric angles are positive in the first quadrant.
Values of only \[\sin \theta \] are positive in the second quadrant.
Values of only \[\tan \theta \] are positive in the third quadrant.
Values of only\[\cos \theta \] are positive in the fourth quadrant.
Complete step-by-step answer:
We solve for all the trigonometric terms separately.
For better understanding we draw the quadrant division
Firstly we solve for \[\cos ({570^ \circ })\]
We can write
\[\cos ({570^ \circ }) = \cos ({360^ \circ } + {210^ \circ })\]
Since \[{360^ \circ } + \] goes to the first quadrant where all trigonometric angles are positive
\[ \Rightarrow \cos ({360^ \circ } + {210^ \circ }) = \cos ({210^ \circ })\]
Now we can write
\[\cos ({210^ \circ }) = \cos ({180^ \circ } + {30^ \circ })\]
Since \[{180^ \circ } + \] goes to the third quadrant where all \[\tan \] angles are positive, so all \[\cos \] angles are negative.
\[ \Rightarrow \cos ({180^ \circ } + {30^ \circ }) = - \cos ({30^ \circ }) = \dfrac{{ - \sqrt 3 }}{2}\]
So, \[\cos ({570^ \circ }) = \dfrac{{ - \sqrt 3 }}{2}\] … (1)
Now we solve for \[\sin ({510^ \circ })\]
We can write
\[\sin ({510^ \circ }) = \sin ({360^ \circ } + {150^ \circ })\]
Since \[{360^ \circ } + \] goes to the first quadrant where all trigonometric angles are positive
\[ \Rightarrow \sin ({360^ \circ } + {150^ \circ }) = \sin ({150^ \circ })\]
Now we can write
\[\sin ({150^ \circ }) = \sin ({180^ \circ } - {30^ \circ })\]
Since \[{180^ \circ } - \] goes to the second quadrant where all \[\sin \] angles are positive.
\[ \Rightarrow \sin ({180^ \circ } - {30^ \circ }) = \sin ({30^ \circ }) = \dfrac{1}{2}\]
So, \[\sin ({510^ \circ }) = \dfrac{1}{2}\] … (2)
Now we solve for \[\sin ( - {330^ \circ })\]
Since, \[\sin \] is an odd function therefore, \[\sin ( - \theta ) = - \sin \theta \]
\[ \Rightarrow \sin ( - {330^ \circ }) = - \sin ({330^ \circ })\]
We can write
\[ - \sin ({330^ \circ }) = - \sin ({360^ \circ } - {30^ \circ })\]
Since \[{360^ \circ } - \] goes to the fourth quadrant where all \[\cos \] angles are only positive.
\[ \Rightarrow - \sin ({360^ \circ } - {30^ \circ }) = - \sin ( - {30^ \circ })\]
Since, \[\sin \] is an odd function therefore, \[\sin ( - \theta ) = - \sin \theta \]
\[ \Rightarrow - \sin ({360^ \circ } - {30^ \circ }) = \sin ({30^ \circ }) = \dfrac{1}{2}\]
So, \[\sin ({-330^ \circ }) = \dfrac{1}{2}\] … (3)
Now we solve for \[\cos ( - {390^ \circ })\]
Since, \[\cos \] is an even function therefore, \[\cos ( - \theta ) = \cos \theta \]
\[ \Rightarrow \cos ( - {390^ \circ }) = \cos ({390^ \circ })\]
We can write
\[\cos ({390^ \circ }) = \cos ({360^ \circ } + {30^ \circ })\]
Since \[{360^ \circ } + \] goes to the first quadrant where all trigonometric angles are positive
\[ \Rightarrow \cos ({360^ \circ } + {30^ \circ }) = \cos ({30^ \circ }) = \dfrac{{\sqrt 3 }}{2}\]
So, \[\cos ( - {390^ \circ }) = \dfrac{{\sqrt 3 }}{2}\] … (4)
Substitute values from equation (1), (2), (3) and (4) in the following equation
\[\cos ({570^ \circ })\sin ({510^ \circ }) + \sin ( - {330^ \circ })\cos ( - {390^ \circ }) = 0\]
\[
\dfrac{{ - \sqrt 3 }}{2} \times \dfrac{1}{2} + \dfrac{1}{2} \times \dfrac{{\sqrt 3 }}{2} = 0 \\
\dfrac{{ - \sqrt 3 }}{4} + \dfrac{{\sqrt 3 }}{4} = 0 \\
0 = 0 \\
\]
Therefore, LHS=RHS
Hence Proved
Note: Students can many times make mistakes when the angle between the brackets is negative, so always check first if the trigonometric function alone is an even or odd function. An odd function brings out the negative sign while an even function eradicates the negative sign.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

