
Prove that: \[\cos 4x = 1 - 8si{n^2}xco{s^2}x\]
Answer
577.2k+ views
Hint: Here in this problem we are going to use the formula of \[cos2x = 2co{s^2}x - 1\] and use it for \[\cos 4x = \cos (2(2x))\], and again we use \[cos2x = 2co{s^2}x - 1\] for further simplification, on solving the problem we will reach to our desired result.
Complete step by step Answer:
Given, \[cos4x = 1 - 8si{n^2}xco{s^2}x\]
Taking LHS, \[cos4x\],
We know, \[cos2x = 2co{s^2}x - 1\]
Replacing x by \[2x\] , we get,
\[cos2\left( {2x} \right) = 2co{s^2}\left( {2x} \right) - 1\]
\[ \Rightarrow cos4x = 2co{s^2}2x - 1\]
Using \[cos2x = 2co{s^2}x - 1\] again, we get,
\[ = 2{\left( {2co{s^2}x - 1} \right)^2} - 1\;\]
Using \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], we get,
\[ = 2\left[ {{{\left( {2co{s^2}x} \right)}^2} + {{\left( 1 \right)}^2} - 2\left( {2co{s^2}x} \right) \times 1} \right] - 1\]
On Simplification we get,
\[ = 2\left[ {4{{\cos }^4}x + 1 - 4{{\cos }^2}x} \right] - 1\]
On opening the bracket we get,
\[ = 8{\cos ^4}x + 2 - 8{\cos ^2}x - 1\]
On further simplification we get,
\[ = 8{\cos ^4}x + 1 - 8{\cos ^2}x\]
On taking terms common we get,
\[ = 8co{s^2}x\left( {co{s^2}x - 1} \right) + 1\]
On taking -1 common we get,
\[ = 8co{s^2}x\left[ { - \left( {1 - co{s^2}x} \right)} \right] + 1\]
\[ = - 8co{s^2}x\left[ {\left( {1 - co{s^2}x} \right)} \right] + 1\]
Using, \[si{n^2}x = 1 - co{s^2}x\], we get,
\[ = - 8co{s^2}xsi{n^2}x + 1\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;\]
On rearranging we get,
\[ = 1 - 8si{n^2}xco{s^2}x\]
=RHS
Hence, \[\cos 4x = 1 - 8si{n^2}xco{s^2}x\]
Note: We can prove the result, \[cos2x = 2co{s^2}x - 1\] by,
Using the identity: \[cos{\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right){\text{ }} = {\text{ }}cos{\text{ }}a.cos{\text{ }}b{\text{ }} - {\text{ }}sin{\text{ }}a.sin{\text{ }}b\]
\[cos2x = cos(x + x) = cosx.cosx - sinx.sinx = co{s^2}x - si{n^2}x\]\[ = co{s^2}x - (1 - co{s^2}x) = 2co{s^2}x - 1\]
Complete step by step Answer:
Given, \[cos4x = 1 - 8si{n^2}xco{s^2}x\]
Taking LHS, \[cos4x\],
We know, \[cos2x = 2co{s^2}x - 1\]
Replacing x by \[2x\] , we get,
\[cos2\left( {2x} \right) = 2co{s^2}\left( {2x} \right) - 1\]
\[ \Rightarrow cos4x = 2co{s^2}2x - 1\]
Using \[cos2x = 2co{s^2}x - 1\] again, we get,
\[ = 2{\left( {2co{s^2}x - 1} \right)^2} - 1\;\]
Using \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], we get,
\[ = 2\left[ {{{\left( {2co{s^2}x} \right)}^2} + {{\left( 1 \right)}^2} - 2\left( {2co{s^2}x} \right) \times 1} \right] - 1\]
On Simplification we get,
\[ = 2\left[ {4{{\cos }^4}x + 1 - 4{{\cos }^2}x} \right] - 1\]
On opening the bracket we get,
\[ = 8{\cos ^4}x + 2 - 8{\cos ^2}x - 1\]
On further simplification we get,
\[ = 8{\cos ^4}x + 1 - 8{\cos ^2}x\]
On taking terms common we get,
\[ = 8co{s^2}x\left( {co{s^2}x - 1} \right) + 1\]
On taking -1 common we get,
\[ = 8co{s^2}x\left[ { - \left( {1 - co{s^2}x} \right)} \right] + 1\]
\[ = - 8co{s^2}x\left[ {\left( {1 - co{s^2}x} \right)} \right] + 1\]
Using, \[si{n^2}x = 1 - co{s^2}x\], we get,
\[ = - 8co{s^2}xsi{n^2}x + 1\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;\]
On rearranging we get,
\[ = 1 - 8si{n^2}xco{s^2}x\]
=RHS
Hence, \[\cos 4x = 1 - 8si{n^2}xco{s^2}x\]
Note: We can prove the result, \[cos2x = 2co{s^2}x - 1\] by,
Using the identity: \[cos{\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right){\text{ }} = {\text{ }}cos{\text{ }}a.cos{\text{ }}b{\text{ }} - {\text{ }}sin{\text{ }}a.sin{\text{ }}b\]
\[cos2x = cos(x + x) = cosx.cosx - sinx.sinx = co{s^2}x - si{n^2}x\]\[ = co{s^2}x - (1 - co{s^2}x) = 2co{s^2}x - 1\]
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

