
Prove that: \[\cos 4x = 1 - 8si{n^2}xco{s^2}x\]
Answer
510.3k+ views
Hint: Here in this problem we are going to use the formula of \[cos2x = 2co{s^2}x - 1\] and use it for \[\cos 4x = \cos (2(2x))\], and again we use \[cos2x = 2co{s^2}x - 1\] for further simplification, on solving the problem we will reach to our desired result.
Complete step by step Answer:
Given, \[cos4x = 1 - 8si{n^2}xco{s^2}x\]
Taking LHS, \[cos4x\],
We know, \[cos2x = 2co{s^2}x - 1\]
Replacing x by \[2x\] , we get,
\[cos2\left( {2x} \right) = 2co{s^2}\left( {2x} \right) - 1\]
\[ \Rightarrow cos4x = 2co{s^2}2x - 1\]
Using \[cos2x = 2co{s^2}x - 1\] again, we get,
\[ = 2{\left( {2co{s^2}x - 1} \right)^2} - 1\;\]
Using \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], we get,
\[ = 2\left[ {{{\left( {2co{s^2}x} \right)}^2} + {{\left( 1 \right)}^2} - 2\left( {2co{s^2}x} \right) \times 1} \right] - 1\]
On Simplification we get,
\[ = 2\left[ {4{{\cos }^4}x + 1 - 4{{\cos }^2}x} \right] - 1\]
On opening the bracket we get,
\[ = 8{\cos ^4}x + 2 - 8{\cos ^2}x - 1\]
On further simplification we get,
\[ = 8{\cos ^4}x + 1 - 8{\cos ^2}x\]
On taking terms common we get,
\[ = 8co{s^2}x\left( {co{s^2}x - 1} \right) + 1\]
On taking -1 common we get,
\[ = 8co{s^2}x\left[ { - \left( {1 - co{s^2}x} \right)} \right] + 1\]
\[ = - 8co{s^2}x\left[ {\left( {1 - co{s^2}x} \right)} \right] + 1\]
Using, \[si{n^2}x = 1 - co{s^2}x\], we get,
\[ = - 8co{s^2}xsi{n^2}x + 1\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;\]
On rearranging we get,
\[ = 1 - 8si{n^2}xco{s^2}x\]
=RHS
Hence, \[\cos 4x = 1 - 8si{n^2}xco{s^2}x\]
Note: We can prove the result, \[cos2x = 2co{s^2}x - 1\] by,
Using the identity: \[cos{\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right){\text{ }} = {\text{ }}cos{\text{ }}a.cos{\text{ }}b{\text{ }} - {\text{ }}sin{\text{ }}a.sin{\text{ }}b\]
\[cos2x = cos(x + x) = cosx.cosx - sinx.sinx = co{s^2}x - si{n^2}x\]\[ = co{s^2}x - (1 - co{s^2}x) = 2co{s^2}x - 1\]
Complete step by step Answer:
Given, \[cos4x = 1 - 8si{n^2}xco{s^2}x\]
Taking LHS, \[cos4x\],
We know, \[cos2x = 2co{s^2}x - 1\]
Replacing x by \[2x\] , we get,
\[cos2\left( {2x} \right) = 2co{s^2}\left( {2x} \right) - 1\]
\[ \Rightarrow cos4x = 2co{s^2}2x - 1\]
Using \[cos2x = 2co{s^2}x - 1\] again, we get,
\[ = 2{\left( {2co{s^2}x - 1} \right)^2} - 1\;\]
Using \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], we get,
\[ = 2\left[ {{{\left( {2co{s^2}x} \right)}^2} + {{\left( 1 \right)}^2} - 2\left( {2co{s^2}x} \right) \times 1} \right] - 1\]
On Simplification we get,
\[ = 2\left[ {4{{\cos }^4}x + 1 - 4{{\cos }^2}x} \right] - 1\]
On opening the bracket we get,
\[ = 8{\cos ^4}x + 2 - 8{\cos ^2}x - 1\]
On further simplification we get,
\[ = 8{\cos ^4}x + 1 - 8{\cos ^2}x\]
On taking terms common we get,
\[ = 8co{s^2}x\left( {co{s^2}x - 1} \right) + 1\]
On taking -1 common we get,
\[ = 8co{s^2}x\left[ { - \left( {1 - co{s^2}x} \right)} \right] + 1\]
\[ = - 8co{s^2}x\left[ {\left( {1 - co{s^2}x} \right)} \right] + 1\]
Using, \[si{n^2}x = 1 - co{s^2}x\], we get,
\[ = - 8co{s^2}xsi{n^2}x + 1\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;\]
On rearranging we get,
\[ = 1 - 8si{n^2}xco{s^2}x\]
=RHS
Hence, \[\cos 4x = 1 - 8si{n^2}xco{s^2}x\]
Note: We can prove the result, \[cos2x = 2co{s^2}x - 1\] by,
Using the identity: \[cos{\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right){\text{ }} = {\text{ }}cos{\text{ }}a.cos{\text{ }}b{\text{ }} - {\text{ }}sin{\text{ }}a.sin{\text{ }}b\]
\[cos2x = cos(x + x) = cosx.cosx - sinx.sinx = co{s^2}x - si{n^2}x\]\[ = co{s^2}x - (1 - co{s^2}x) = 2co{s^2}x - 1\]
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
