Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Prove that: \[\cos 4x = 1 - 8si{n^2}xco{s^2}x\]

Answer
VerifiedVerified
510.3k+ views
Hint: Here in this problem we are going to use the formula of \[cos2x = 2co{s^2}x - 1\] and use it for \[\cos 4x = \cos (2(2x))\], and again we use \[cos2x = 2co{s^2}x - 1\] for further simplification, on solving the problem we will reach to our desired result.

Complete step by step Answer:

Given, \[cos4x = 1 - 8si{n^2}xco{s^2}x\]
Taking LHS, \[cos4x\],
We know, \[cos2x = 2co{s^2}x - 1\]
Replacing x by \[2x\] , we get,
\[cos2\left( {2x} \right) = 2co{s^2}\left( {2x} \right) - 1\]
\[ \Rightarrow cos4x = 2co{s^2}2x - 1\]
Using \[cos2x = 2co{s^2}x - 1\] again, we get,
\[ = 2{\left( {2co{s^2}x - 1} \right)^2} - 1\;\]
Using \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], we get,
\[ = 2\left[ {{{\left( {2co{s^2}x} \right)}^2} + {{\left( 1 \right)}^2} - 2\left( {2co{s^2}x} \right) \times 1} \right] - 1\]
On Simplification we get,
\[ = 2\left[ {4{{\cos }^4}x + 1 - 4{{\cos }^2}x} \right] - 1\]
On opening the bracket we get,
\[ = 8{\cos ^4}x + 2 - 8{\cos ^2}x - 1\]
On further simplification we get,
\[ = 8{\cos ^4}x + 1 - 8{\cos ^2}x\]
On taking terms common we get,
\[ = 8co{s^2}x\left( {co{s^2}x - 1} \right) + 1\]
On taking -1 common we get,
\[ = 8co{s^2}x\left[ { - \left( {1 - co{s^2}x} \right)} \right] + 1\]
\[ = - 8co{s^2}x\left[ {\left( {1 - co{s^2}x} \right)} \right] + 1\]
Using, \[si{n^2}x = 1 - co{s^2}x\], we get,
\[ = - 8co{s^2}xsi{n^2}x + 1\;{\text{ }}\;{\text{ }}\;{\text{ }}\;{\text{ }}\;\]
On rearranging we get,
\[ = 1 - 8si{n^2}xco{s^2}x\]
=RHS
Hence, \[\cos 4x = 1 - 8si{n^2}xco{s^2}x\]

Note: We can prove the result, \[cos2x = 2co{s^2}x - 1\] by,
Using the identity: \[cos{\text{ }}\left( {a{\text{ }} + {\text{ }}b} \right){\text{ }} = {\text{ }}cos{\text{ }}a.cos{\text{ }}b{\text{ }} - {\text{ }}sin{\text{ }}a.sin{\text{ }}b\]
\[cos2x = cos(x + x) = cosx.cosx - sinx.sinx = co{s^2}x - si{n^2}x\]\[ = co{s^2}x - (1 - co{s^2}x) = 2co{s^2}x - 1\]