
Prove that coefficient of in ${{x}^{n}}$ the expansion of ${{\left( 1+x \right)}^{2n}}$ is twice the coefficient of ${{x}^{n}}$ in the expansion of ${{\left( 1+x \right)}^{2n-1}}$.
(a) True.
(b) False.
Answer
613.8k+ views
Hint: We will use binomial theorem to write expanded form of ${{\left( 1+x \right)}^{2n}}$ and ${{\left( 1+x \right)}^{2n-1}}$. Then we will find the coefficient of ${{x}^{n}}$ in both expansions and check if the condition given is true or false.
Complete step by step answer:
Firstly, we will use binomial theorem to write the expansion of ${{\left( 1+x \right)}^{2n}}$ and ${{\left( 1+x \right)}^{2n-1}}$.
Binomial theorem states that,
For any positive integer $n$, the ${{n}^{th}}$ power of the sum of two real numbers $a$ and $b$ may be expressed as the sum of $n+1$ terms as given below:
${{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}}$
$\Rightarrow {{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+\cdots +{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+\cdots +{}^{n}{{C}_{n}}{{b}^{n}}$.
Where, ${}^{n}{{C}_{r}}=\dfrac{\left| \!{\underline {\,
n \,}} \right. }{\left| \!{\underline {\,
r \,}} \right. \times \left| \!{\underline {\,
n-r \,}} \right. }$.
Now, to write expansion of ${{\left( 1+x \right)}^{2n}}$, we compare ${{\left( 1+x \right)}^{2n}}$ with ${{\left( a+b \right)}^{n}},$ so we get,
$a=1,b=x,n=2n$.
Hence, by putting these values in the binomial theorem, we can write,
$\Rightarrow {{\left( 1+x \right)}^{2n}}={}^{2n}{{C}_{0}}{{1}^{2n}}+{}^{2n}{{C}_{1}}{{1}^{2n-1}}{{x}^{1}}+{}^{2n}{{C}_{2}}{{1}^{2n-2}}{{x}^{2}}+\cdots +{}^{2n}{{C}_{n}}{{1}^{2n-n}}{{x}^{n}}+\cdots +{}^{2n}{{C}_{2n}}{{x}^{2n}}$
$={}^{2n}{{C}_{0}}+{}^{2n}{{C}_{1}}{{x}^{1}}+{}^{2n}{{C}_{2}}{{x}^{2}}+\cdots +{}^{2n}{{C}_{n}}{{x}^{n}}+\cdots +{}^{2n}{{C}_{2n}}{{x}^{2n}}$.
In this expansion, the coefficient of ${{x}^{n}}$ is ${}^{2n}{{C}_{n}}$.
Here, ${}^{2n}{{C}_{n}}=\dfrac{\left| \!{\underline {\,
2n \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
2n-n \,}} \right. }$
$=\dfrac{\left| \!{\underline {\,
2n \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n \,}} \right. }$
From definition of factorial, we can write,
$=\dfrac{2n\times \left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times n\times \left| \!{\underline {\,
n-1 \,}} \right. }$
Cancelling $n$, we get,
$=\dfrac{2\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
nF-1 \,}} \right. }$
$=2\times \left( \dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n-1 \,}} \right. } \right)\cdots \cdots \left( i \right)$
Again, to write expansion of ${{\left( 1+x \right)}^{2n-1}}$, we compare ${{\left( 1+x \right)}^{2n-1}}$ with ${{\left( a+b \right)}^{n}},$ so we get,
$a=1,b=x,n=2n-1$.
Hence, by putting these values in the binomial theorem, we can write,
$\Rightarrow {{\left( 1+x \right)}^{2n-1}}={}^{2n-1}{{C}_{0}}{{1}^{2n-1}}+{}^{2n-1}{{C}_{1}}{{1}^{2n-1-1}}{{x}^{1}}+{}^{2n-1}{{C}_{2}}{{1}^{2n-1-2}}{{x}^{2}}+\cdots +{}^{2n-1}{{C}_{n}}{{1}^{2n-1-n}}{{x}^{n}}+\cdots +{}^{2n-1}{{C}_{2n-1}}{{x}^{2n-1}}$
$={}^{2n-1}{{C}_{0}}+{}^{2n-1}{{C}_{1}}{{x}^{1}}+{}^{2n-1}{{C}_{2}}{{x}^{2}}+\cdots +{}^{2n-1}{{C}_{n}}{{x}^{n}}+\cdots +{}^{2n-1}{{C}_{2n-1}}{{x}^{2n-1}}$.
In this expansion, the coefficient of ${{x}^{n}}$ is ${}^{2n-1}{{C}_{n}}$.
Here, ${}^{2n-1}{{C}_{n}}=\dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
2n-1-n \,}} \right. }$
$=\dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n-1 \,}} \right. }\cdots \cdots \left( ii \right)$
Form, equation $\left( i \right)$ and $\left( ii \right)$, we get,
${}^{2n}{{C}_{n}}=2\times \left( \dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n-1 \,}} \right. } \right)$
$\Rightarrow {}^{2n}{{C}_{n}}=2\times {}^{2n-1}{{C}_{n}}$
That is, coefficient of ${{x}^{n}}$ in the expansion of ${{\left( 1+x \right)}^{2n}}$ is twice the coefficient of ${{x}^{n}}$ in the expansion of ${{\left( 1+x \right)}^{2n-1}}$.
Hence, proved.
Therefore, the correct answer is option (a).
Note: In this question, we just need a coefficient of one of the terms, which is, ${{x}^{n}}$. So, instead of writing whole binomial expansion, we can directly write coefficient on ${{x}^{n}}$ using the formula for ${{r}^{th}}$ term of binomial expansion of ${{\left( a+b \right)}^{n}}$, which is given by,
\[{{r}^{th}}\text{ term =}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\].
Complete step by step answer:
Firstly, we will use binomial theorem to write the expansion of ${{\left( 1+x \right)}^{2n}}$ and ${{\left( 1+x \right)}^{2n-1}}$.
Binomial theorem states that,
For any positive integer $n$, the ${{n}^{th}}$ power of the sum of two real numbers $a$ and $b$ may be expressed as the sum of $n+1$ terms as given below:
${{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}}$
$\Rightarrow {{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+\cdots +{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+\cdots +{}^{n}{{C}_{n}}{{b}^{n}}$.
Where, ${}^{n}{{C}_{r}}=\dfrac{\left| \!{\underline {\,
n \,}} \right. }{\left| \!{\underline {\,
r \,}} \right. \times \left| \!{\underline {\,
n-r \,}} \right. }$.
Now, to write expansion of ${{\left( 1+x \right)}^{2n}}$, we compare ${{\left( 1+x \right)}^{2n}}$ with ${{\left( a+b \right)}^{n}},$ so we get,
$a=1,b=x,n=2n$.
Hence, by putting these values in the binomial theorem, we can write,
$\Rightarrow {{\left( 1+x \right)}^{2n}}={}^{2n}{{C}_{0}}{{1}^{2n}}+{}^{2n}{{C}_{1}}{{1}^{2n-1}}{{x}^{1}}+{}^{2n}{{C}_{2}}{{1}^{2n-2}}{{x}^{2}}+\cdots +{}^{2n}{{C}_{n}}{{1}^{2n-n}}{{x}^{n}}+\cdots +{}^{2n}{{C}_{2n}}{{x}^{2n}}$
$={}^{2n}{{C}_{0}}+{}^{2n}{{C}_{1}}{{x}^{1}}+{}^{2n}{{C}_{2}}{{x}^{2}}+\cdots +{}^{2n}{{C}_{n}}{{x}^{n}}+\cdots +{}^{2n}{{C}_{2n}}{{x}^{2n}}$.
In this expansion, the coefficient of ${{x}^{n}}$ is ${}^{2n}{{C}_{n}}$.
Here, ${}^{2n}{{C}_{n}}=\dfrac{\left| \!{\underline {\,
2n \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
2n-n \,}} \right. }$
$=\dfrac{\left| \!{\underline {\,
2n \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n \,}} \right. }$
From definition of factorial, we can write,
$=\dfrac{2n\times \left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times n\times \left| \!{\underline {\,
n-1 \,}} \right. }$
Cancelling $n$, we get,
$=\dfrac{2\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
nF-1 \,}} \right. }$
$=2\times \left( \dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n-1 \,}} \right. } \right)\cdots \cdots \left( i \right)$
Again, to write expansion of ${{\left( 1+x \right)}^{2n-1}}$, we compare ${{\left( 1+x \right)}^{2n-1}}$ with ${{\left( a+b \right)}^{n}},$ so we get,
$a=1,b=x,n=2n-1$.
Hence, by putting these values in the binomial theorem, we can write,
$\Rightarrow {{\left( 1+x \right)}^{2n-1}}={}^{2n-1}{{C}_{0}}{{1}^{2n-1}}+{}^{2n-1}{{C}_{1}}{{1}^{2n-1-1}}{{x}^{1}}+{}^{2n-1}{{C}_{2}}{{1}^{2n-1-2}}{{x}^{2}}+\cdots +{}^{2n-1}{{C}_{n}}{{1}^{2n-1-n}}{{x}^{n}}+\cdots +{}^{2n-1}{{C}_{2n-1}}{{x}^{2n-1}}$
$={}^{2n-1}{{C}_{0}}+{}^{2n-1}{{C}_{1}}{{x}^{1}}+{}^{2n-1}{{C}_{2}}{{x}^{2}}+\cdots +{}^{2n-1}{{C}_{n}}{{x}^{n}}+\cdots +{}^{2n-1}{{C}_{2n-1}}{{x}^{2n-1}}$.
In this expansion, the coefficient of ${{x}^{n}}$ is ${}^{2n-1}{{C}_{n}}$.
Here, ${}^{2n-1}{{C}_{n}}=\dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
2n-1-n \,}} \right. }$
$=\dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n-1 \,}} \right. }\cdots \cdots \left( ii \right)$
Form, equation $\left( i \right)$ and $\left( ii \right)$, we get,
${}^{2n}{{C}_{n}}=2\times \left( \dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n-1 \,}} \right. } \right)$
$\Rightarrow {}^{2n}{{C}_{n}}=2\times {}^{2n-1}{{C}_{n}}$
That is, coefficient of ${{x}^{n}}$ in the expansion of ${{\left( 1+x \right)}^{2n}}$ is twice the coefficient of ${{x}^{n}}$ in the expansion of ${{\left( 1+x \right)}^{2n-1}}$.
Hence, proved.
Therefore, the correct answer is option (a).
Note: In this question, we just need a coefficient of one of the terms, which is, ${{x}^{n}}$. So, instead of writing whole binomial expansion, we can directly write coefficient on ${{x}^{n}}$ using the formula for ${{r}^{th}}$ term of binomial expansion of ${{\left( a+b \right)}^{n}}$, which is given by,
\[{{r}^{th}}\text{ term =}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

