
Prove that coefficient of in ${{x}^{n}}$ the expansion of ${{\left( 1+x \right)}^{2n}}$ is twice the coefficient of ${{x}^{n}}$ in the expansion of ${{\left( 1+x \right)}^{2n-1}}$.
(a) True.
(b) False.
Answer
585.6k+ views
Hint: We will use binomial theorem to write expanded form of ${{\left( 1+x \right)}^{2n}}$ and ${{\left( 1+x \right)}^{2n-1}}$. Then we will find the coefficient of ${{x}^{n}}$ in both expansions and check if the condition given is true or false.
Complete step by step answer:
Firstly, we will use binomial theorem to write the expansion of ${{\left( 1+x \right)}^{2n}}$ and ${{\left( 1+x \right)}^{2n-1}}$.
Binomial theorem states that,
For any positive integer $n$, the ${{n}^{th}}$ power of the sum of two real numbers $a$ and $b$ may be expressed as the sum of $n+1$ terms as given below:
${{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}}$
$\Rightarrow {{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+\cdots +{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+\cdots +{}^{n}{{C}_{n}}{{b}^{n}}$.
Where, ${}^{n}{{C}_{r}}=\dfrac{\left| \!{\underline {\,
n \,}} \right. }{\left| \!{\underline {\,
r \,}} \right. \times \left| \!{\underline {\,
n-r \,}} \right. }$.
Now, to write expansion of ${{\left( 1+x \right)}^{2n}}$, we compare ${{\left( 1+x \right)}^{2n}}$ with ${{\left( a+b \right)}^{n}},$ so we get,
$a=1,b=x,n=2n$.
Hence, by putting these values in the binomial theorem, we can write,
$\Rightarrow {{\left( 1+x \right)}^{2n}}={}^{2n}{{C}_{0}}{{1}^{2n}}+{}^{2n}{{C}_{1}}{{1}^{2n-1}}{{x}^{1}}+{}^{2n}{{C}_{2}}{{1}^{2n-2}}{{x}^{2}}+\cdots +{}^{2n}{{C}_{n}}{{1}^{2n-n}}{{x}^{n}}+\cdots +{}^{2n}{{C}_{2n}}{{x}^{2n}}$
$={}^{2n}{{C}_{0}}+{}^{2n}{{C}_{1}}{{x}^{1}}+{}^{2n}{{C}_{2}}{{x}^{2}}+\cdots +{}^{2n}{{C}_{n}}{{x}^{n}}+\cdots +{}^{2n}{{C}_{2n}}{{x}^{2n}}$.
In this expansion, the coefficient of ${{x}^{n}}$ is ${}^{2n}{{C}_{n}}$.
Here, ${}^{2n}{{C}_{n}}=\dfrac{\left| \!{\underline {\,
2n \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
2n-n \,}} \right. }$
$=\dfrac{\left| \!{\underline {\,
2n \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n \,}} \right. }$
From definition of factorial, we can write,
$=\dfrac{2n\times \left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times n\times \left| \!{\underline {\,
n-1 \,}} \right. }$
Cancelling $n$, we get,
$=\dfrac{2\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
nF-1 \,}} \right. }$
$=2\times \left( \dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n-1 \,}} \right. } \right)\cdots \cdots \left( i \right)$
Again, to write expansion of ${{\left( 1+x \right)}^{2n-1}}$, we compare ${{\left( 1+x \right)}^{2n-1}}$ with ${{\left( a+b \right)}^{n}},$ so we get,
$a=1,b=x,n=2n-1$.
Hence, by putting these values in the binomial theorem, we can write,
$\Rightarrow {{\left( 1+x \right)}^{2n-1}}={}^{2n-1}{{C}_{0}}{{1}^{2n-1}}+{}^{2n-1}{{C}_{1}}{{1}^{2n-1-1}}{{x}^{1}}+{}^{2n-1}{{C}_{2}}{{1}^{2n-1-2}}{{x}^{2}}+\cdots +{}^{2n-1}{{C}_{n}}{{1}^{2n-1-n}}{{x}^{n}}+\cdots +{}^{2n-1}{{C}_{2n-1}}{{x}^{2n-1}}$
$={}^{2n-1}{{C}_{0}}+{}^{2n-1}{{C}_{1}}{{x}^{1}}+{}^{2n-1}{{C}_{2}}{{x}^{2}}+\cdots +{}^{2n-1}{{C}_{n}}{{x}^{n}}+\cdots +{}^{2n-1}{{C}_{2n-1}}{{x}^{2n-1}}$.
In this expansion, the coefficient of ${{x}^{n}}$ is ${}^{2n-1}{{C}_{n}}$.
Here, ${}^{2n-1}{{C}_{n}}=\dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
2n-1-n \,}} \right. }$
$=\dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n-1 \,}} \right. }\cdots \cdots \left( ii \right)$
Form, equation $\left( i \right)$ and $\left( ii \right)$, we get,
${}^{2n}{{C}_{n}}=2\times \left( \dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n-1 \,}} \right. } \right)$
$\Rightarrow {}^{2n}{{C}_{n}}=2\times {}^{2n-1}{{C}_{n}}$
That is, coefficient of ${{x}^{n}}$ in the expansion of ${{\left( 1+x \right)}^{2n}}$ is twice the coefficient of ${{x}^{n}}$ in the expansion of ${{\left( 1+x \right)}^{2n-1}}$.
Hence, proved.
Therefore, the correct answer is option (a).
Note: In this question, we just need a coefficient of one of the terms, which is, ${{x}^{n}}$. So, instead of writing whole binomial expansion, we can directly write coefficient on ${{x}^{n}}$ using the formula for ${{r}^{th}}$ term of binomial expansion of ${{\left( a+b \right)}^{n}}$, which is given by,
\[{{r}^{th}}\text{ term =}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\].
Complete step by step answer:
Firstly, we will use binomial theorem to write the expansion of ${{\left( 1+x \right)}^{2n}}$ and ${{\left( 1+x \right)}^{2n-1}}$.
Binomial theorem states that,
For any positive integer $n$, the ${{n}^{th}}$ power of the sum of two real numbers $a$ and $b$ may be expressed as the sum of $n+1$ terms as given below:
${{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}}$
$\Rightarrow {{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+\cdots +{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+\cdots +{}^{n}{{C}_{n}}{{b}^{n}}$.
Where, ${}^{n}{{C}_{r}}=\dfrac{\left| \!{\underline {\,
n \,}} \right. }{\left| \!{\underline {\,
r \,}} \right. \times \left| \!{\underline {\,
n-r \,}} \right. }$.
Now, to write expansion of ${{\left( 1+x \right)}^{2n}}$, we compare ${{\left( 1+x \right)}^{2n}}$ with ${{\left( a+b \right)}^{n}},$ so we get,
$a=1,b=x,n=2n$.
Hence, by putting these values in the binomial theorem, we can write,
$\Rightarrow {{\left( 1+x \right)}^{2n}}={}^{2n}{{C}_{0}}{{1}^{2n}}+{}^{2n}{{C}_{1}}{{1}^{2n-1}}{{x}^{1}}+{}^{2n}{{C}_{2}}{{1}^{2n-2}}{{x}^{2}}+\cdots +{}^{2n}{{C}_{n}}{{1}^{2n-n}}{{x}^{n}}+\cdots +{}^{2n}{{C}_{2n}}{{x}^{2n}}$
$={}^{2n}{{C}_{0}}+{}^{2n}{{C}_{1}}{{x}^{1}}+{}^{2n}{{C}_{2}}{{x}^{2}}+\cdots +{}^{2n}{{C}_{n}}{{x}^{n}}+\cdots +{}^{2n}{{C}_{2n}}{{x}^{2n}}$.
In this expansion, the coefficient of ${{x}^{n}}$ is ${}^{2n}{{C}_{n}}$.
Here, ${}^{2n}{{C}_{n}}=\dfrac{\left| \!{\underline {\,
2n \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
2n-n \,}} \right. }$
$=\dfrac{\left| \!{\underline {\,
2n \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n \,}} \right. }$
From definition of factorial, we can write,
$=\dfrac{2n\times \left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times n\times \left| \!{\underline {\,
n-1 \,}} \right. }$
Cancelling $n$, we get,
$=\dfrac{2\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
nF-1 \,}} \right. }$
$=2\times \left( \dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n-1 \,}} \right. } \right)\cdots \cdots \left( i \right)$
Again, to write expansion of ${{\left( 1+x \right)}^{2n-1}}$, we compare ${{\left( 1+x \right)}^{2n-1}}$ with ${{\left( a+b \right)}^{n}},$ so we get,
$a=1,b=x,n=2n-1$.
Hence, by putting these values in the binomial theorem, we can write,
$\Rightarrow {{\left( 1+x \right)}^{2n-1}}={}^{2n-1}{{C}_{0}}{{1}^{2n-1}}+{}^{2n-1}{{C}_{1}}{{1}^{2n-1-1}}{{x}^{1}}+{}^{2n-1}{{C}_{2}}{{1}^{2n-1-2}}{{x}^{2}}+\cdots +{}^{2n-1}{{C}_{n}}{{1}^{2n-1-n}}{{x}^{n}}+\cdots +{}^{2n-1}{{C}_{2n-1}}{{x}^{2n-1}}$
$={}^{2n-1}{{C}_{0}}+{}^{2n-1}{{C}_{1}}{{x}^{1}}+{}^{2n-1}{{C}_{2}}{{x}^{2}}+\cdots +{}^{2n-1}{{C}_{n}}{{x}^{n}}+\cdots +{}^{2n-1}{{C}_{2n-1}}{{x}^{2n-1}}$.
In this expansion, the coefficient of ${{x}^{n}}$ is ${}^{2n-1}{{C}_{n}}$.
Here, ${}^{2n-1}{{C}_{n}}=\dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
2n-1-n \,}} \right. }$
$=\dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n-1 \,}} \right. }\cdots \cdots \left( ii \right)$
Form, equation $\left( i \right)$ and $\left( ii \right)$, we get,
${}^{2n}{{C}_{n}}=2\times \left( \dfrac{\left| \!{\underline {\,
2n-1 \,}} \right. }{\left| \!{\underline {\,
n \,}} \right. \times \left| \!{\underline {\,
n-1 \,}} \right. } \right)$
$\Rightarrow {}^{2n}{{C}_{n}}=2\times {}^{2n-1}{{C}_{n}}$
That is, coefficient of ${{x}^{n}}$ in the expansion of ${{\left( 1+x \right)}^{2n}}$ is twice the coefficient of ${{x}^{n}}$ in the expansion of ${{\left( 1+x \right)}^{2n-1}}$.
Hence, proved.
Therefore, the correct answer is option (a).
Note: In this question, we just need a coefficient of one of the terms, which is, ${{x}^{n}}$. So, instead of writing whole binomial expansion, we can directly write coefficient on ${{x}^{n}}$ using the formula for ${{r}^{th}}$ term of binomial expansion of ${{\left( a+b \right)}^{n}}$, which is given by,
\[{{r}^{th}}\text{ term =}{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\].
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

