
Prove that \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca\] is always non-negative for all values of a, b and c.
Answer
515.1k+ views
Hint: We will first multiply and divide the given expression with 2 and then we will convert it in terms of square. Then we know that squares of numbers are always greater than or equal to zero. Thus using this information we will prove the given question.
Complete step-by-step answer:
The expression mentioned in the question is \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca.......(1)\].
Now dividing and multiplying equation (1) by 2 we get,
\[\Rightarrow \dfrac{2}{2}({{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca).......(2)\]
Now multiplying 2 with all the terms in the numerator in equation (2) we get,
\[\Rightarrow \dfrac{(2{{a}^{2}}+2{{b}^{2}}+2{{c}^{2}}-2ab-2bc-2ca)}{2}.......(3)\]
Now rearranging the terms in the form of squares in equation (3) we get,
\[\Rightarrow
\dfrac{({{a}^{2}}-2ab+{{b}^{2}})+({{b}^{2}}-2bc+{{c}^{2}})+({{c}^{2}}-2ac+{{a}^{2}})}{2}.......(4)\]
Now from equation (4) we can see that we have grouped all the terms in three form of
squares,
\[\Rightarrow \dfrac{{{(a-b)}^{2}}+{{(b-c)}^{2}}+{{(c-a)}^{2}}}{2}.......(5)\]
Now from equation (5) we also know that the square of a number is always greater than or
equal to zero. Hence \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca\] is always non negative. Hence proved.
Note: Remembering the properties of the square of numbers is the key here. Also we need to remember \[{{(a-b)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\] formula or else we might get confused how to proceed after equation (3). Also we in a hurry can make a mistake after equation (3) if we are unable to recognize the terms in the form of squares and hence we need to be very careful while doing this step.
Complete step-by-step answer:
The expression mentioned in the question is \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca.......(1)\].
Now dividing and multiplying equation (1) by 2 we get,
\[\Rightarrow \dfrac{2}{2}({{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca).......(2)\]
Now multiplying 2 with all the terms in the numerator in equation (2) we get,
\[\Rightarrow \dfrac{(2{{a}^{2}}+2{{b}^{2}}+2{{c}^{2}}-2ab-2bc-2ca)}{2}.......(3)\]
Now rearranging the terms in the form of squares in equation (3) we get,
\[\Rightarrow
\dfrac{({{a}^{2}}-2ab+{{b}^{2}})+({{b}^{2}}-2bc+{{c}^{2}})+({{c}^{2}}-2ac+{{a}^{2}})}{2}.......(4)\]
Now from equation (4) we can see that we have grouped all the terms in three form of
squares,
\[\Rightarrow \dfrac{{{(a-b)}^{2}}+{{(b-c)}^{2}}+{{(c-a)}^{2}}}{2}.......(5)\]
Now from equation (5) we also know that the square of a number is always greater than or
equal to zero. Hence \[{{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca\] is always non negative. Hence proved.
Note: Remembering the properties of the square of numbers is the key here. Also we need to remember \[{{(a-b)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\] formula or else we might get confused how to proceed after equation (3). Also we in a hurry can make a mistake after equation (3) if we are unable to recognize the terms in the form of squares and hence we need to be very careful while doing this step.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE
