
Prove that, ${}^3{C_1} + {}^7{C_2} + {}^{11}{C_3} + ......... + {}^{(4n - 1)}{C_n} = 1 + \left( {2n - 1} \right) \cdot {2^n}$.
Answer
615k+ views
Hint: Here the above equation is reduced to a series form and then apply a combination formula to prove.
Complete step-by-step answer:
Given, ${}^3{C_1} + {}^7{C_2} + {}^{11}{C_3} + ......... + {}^{(4n - 1)}{C_n} = 1 + \left( {2n - 1} \right) \cdot {2^n}$
Take LHS
This series is written as
$\sum\limits_{r = 1}^n {\left( {4r - 1} \right)} $$^n{C_r}$
As you know
$^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}}$
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4r - 1} \right)} $$^n{C_r}$ = $\sum\limits_{r = 1}^n {\left( {4r - 1} \right)} \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}}$
Now separate the summation
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4r} \right)} \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}} - \sum\limits_{r = 1}^n {^n{C_r}} $
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4r} \right)} \dfrac{{n\left( {n - 1} \right)!}}{{\left( {n - r} \right)! \times r\left( {r - 1} \right)!}} - \left( {^n{C_1}{ + ^n}{C_2}{ + ^n}{C_3} + ......{ + ^n}{C_n}} \right)$
Now you know $\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - r} \right)! \times \left( {r - 1} \right)!}}{ = ^{n - 1}}{C_{r - 1}}$ and $\left( {^n{C_0}{ + ^n}{C_1}{ + ^n}{C_2} + ......{ + ^n}{C_{n - 1}}} \right) = {\left( {1 + 1} \right)^n} = {2^n}$
According to {binomial expansion} and the value of $^n{C_0} = 1$ , So apply this
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4n} \right)} $$^{n - 1}{C_{r - 1}} - {2^n}$
\[ \Rightarrow 4n\left( {^{n - 1}{C_0}{ + ^{n - 1}}{C_1}{ + ^{n - 1}}{C_2} + ......{ + ^{n - 1}}{C_{n - 1}}} \right) - \left( {{2^n} - 1} \right)\]
You know according to binomial expansion $\left( {^{n - 1}{C_0}{ + ^{n - 1}}{C_1}{ + ^{n - 1}}{C_2} + ......{ + ^{n - 1}}{C_{n - 1}}} \right) = {\left( {1 + 1} \right)^{n - 1}} = {2^{n - 1}}$
\[ \Rightarrow 4n \times {2^{n - 1}} - {2^n} + 1\]
\[ \Rightarrow 2n \times {2^n} - {2^n} + 1\]
\[ \Rightarrow 1 + \left( {2n - 1} \right){2^n}\] = RHS
Hence proved.
Note: In this type of question answer can be in any form but take care what you have to prove, you have to give an answer in that form.
Complete step-by-step answer:
Given, ${}^3{C_1} + {}^7{C_2} + {}^{11}{C_3} + ......... + {}^{(4n - 1)}{C_n} = 1 + \left( {2n - 1} \right) \cdot {2^n}$
Take LHS
This series is written as
$\sum\limits_{r = 1}^n {\left( {4r - 1} \right)} $$^n{C_r}$
As you know
$^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}}$
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4r - 1} \right)} $$^n{C_r}$ = $\sum\limits_{r = 1}^n {\left( {4r - 1} \right)} \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}}$
Now separate the summation
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4r} \right)} \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}} - \sum\limits_{r = 1}^n {^n{C_r}} $
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4r} \right)} \dfrac{{n\left( {n - 1} \right)!}}{{\left( {n - r} \right)! \times r\left( {r - 1} \right)!}} - \left( {^n{C_1}{ + ^n}{C_2}{ + ^n}{C_3} + ......{ + ^n}{C_n}} \right)$
Now you know $\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - r} \right)! \times \left( {r - 1} \right)!}}{ = ^{n - 1}}{C_{r - 1}}$ and $\left( {^n{C_0}{ + ^n}{C_1}{ + ^n}{C_2} + ......{ + ^n}{C_{n - 1}}} \right) = {\left( {1 + 1} \right)^n} = {2^n}$
According to {binomial expansion} and the value of $^n{C_0} = 1$ , So apply this
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4n} \right)} $$^{n - 1}{C_{r - 1}} - {2^n}$
\[ \Rightarrow 4n\left( {^{n - 1}{C_0}{ + ^{n - 1}}{C_1}{ + ^{n - 1}}{C_2} + ......{ + ^{n - 1}}{C_{n - 1}}} \right) - \left( {{2^n} - 1} \right)\]
You know according to binomial expansion $\left( {^{n - 1}{C_0}{ + ^{n - 1}}{C_1}{ + ^{n - 1}}{C_2} + ......{ + ^{n - 1}}{C_{n - 1}}} \right) = {\left( {1 + 1} \right)^{n - 1}} = {2^{n - 1}}$
\[ \Rightarrow 4n \times {2^{n - 1}} - {2^n} + 1\]
\[ \Rightarrow 2n \times {2^n} - {2^n} + 1\]
\[ \Rightarrow 1 + \left( {2n - 1} \right){2^n}\] = RHS
Hence proved.
Note: In this type of question answer can be in any form but take care what you have to prove, you have to give an answer in that form.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

