
Prove that, ${}^3{C_1} + {}^7{C_2} + {}^{11}{C_3} + ......... + {}^{(4n - 1)}{C_n} = 1 + \left( {2n - 1} \right) \cdot {2^n}$.
Answer
602.4k+ views
Hint: Here the above equation is reduced to a series form and then apply a combination formula to prove.
Complete step-by-step answer:
Given, ${}^3{C_1} + {}^7{C_2} + {}^{11}{C_3} + ......... + {}^{(4n - 1)}{C_n} = 1 + \left( {2n - 1} \right) \cdot {2^n}$
Take LHS
This series is written as
$\sum\limits_{r = 1}^n {\left( {4r - 1} \right)} $$^n{C_r}$
As you know
$^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}}$
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4r - 1} \right)} $$^n{C_r}$ = $\sum\limits_{r = 1}^n {\left( {4r - 1} \right)} \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}}$
Now separate the summation
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4r} \right)} \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}} - \sum\limits_{r = 1}^n {^n{C_r}} $
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4r} \right)} \dfrac{{n\left( {n - 1} \right)!}}{{\left( {n - r} \right)! \times r\left( {r - 1} \right)!}} - \left( {^n{C_1}{ + ^n}{C_2}{ + ^n}{C_3} + ......{ + ^n}{C_n}} \right)$
Now you know $\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - r} \right)! \times \left( {r - 1} \right)!}}{ = ^{n - 1}}{C_{r - 1}}$ and $\left( {^n{C_0}{ + ^n}{C_1}{ + ^n}{C_2} + ......{ + ^n}{C_{n - 1}}} \right) = {\left( {1 + 1} \right)^n} = {2^n}$
According to {binomial expansion} and the value of $^n{C_0} = 1$ , So apply this
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4n} \right)} $$^{n - 1}{C_{r - 1}} - {2^n}$
\[ \Rightarrow 4n\left( {^{n - 1}{C_0}{ + ^{n - 1}}{C_1}{ + ^{n - 1}}{C_2} + ......{ + ^{n - 1}}{C_{n - 1}}} \right) - \left( {{2^n} - 1} \right)\]
You know according to binomial expansion $\left( {^{n - 1}{C_0}{ + ^{n - 1}}{C_1}{ + ^{n - 1}}{C_2} + ......{ + ^{n - 1}}{C_{n - 1}}} \right) = {\left( {1 + 1} \right)^{n - 1}} = {2^{n - 1}}$
\[ \Rightarrow 4n \times {2^{n - 1}} - {2^n} + 1\]
\[ \Rightarrow 2n \times {2^n} - {2^n} + 1\]
\[ \Rightarrow 1 + \left( {2n - 1} \right){2^n}\] = RHS
Hence proved.
Note: In this type of question answer can be in any form but take care what you have to prove, you have to give an answer in that form.
Complete step-by-step answer:
Given, ${}^3{C_1} + {}^7{C_2} + {}^{11}{C_3} + ......... + {}^{(4n - 1)}{C_n} = 1 + \left( {2n - 1} \right) \cdot {2^n}$
Take LHS
This series is written as
$\sum\limits_{r = 1}^n {\left( {4r - 1} \right)} $$^n{C_r}$
As you know
$^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}}$
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4r - 1} \right)} $$^n{C_r}$ = $\sum\limits_{r = 1}^n {\left( {4r - 1} \right)} \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}}$
Now separate the summation
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4r} \right)} \dfrac{{n!}}{{\left( {n - r} \right)! \times r!}} - \sum\limits_{r = 1}^n {^n{C_r}} $
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4r} \right)} \dfrac{{n\left( {n - 1} \right)!}}{{\left( {n - r} \right)! \times r\left( {r - 1} \right)!}} - \left( {^n{C_1}{ + ^n}{C_2}{ + ^n}{C_3} + ......{ + ^n}{C_n}} \right)$
Now you know $\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - r} \right)! \times \left( {r - 1} \right)!}}{ = ^{n - 1}}{C_{r - 1}}$ and $\left( {^n{C_0}{ + ^n}{C_1}{ + ^n}{C_2} + ......{ + ^n}{C_{n - 1}}} \right) = {\left( {1 + 1} \right)^n} = {2^n}$
According to {binomial expansion} and the value of $^n{C_0} = 1$ , So apply this
$ \Rightarrow \sum\limits_{r = 1}^n {\left( {4n} \right)} $$^{n - 1}{C_{r - 1}} - {2^n}$
\[ \Rightarrow 4n\left( {^{n - 1}{C_0}{ + ^{n - 1}}{C_1}{ + ^{n - 1}}{C_2} + ......{ + ^{n - 1}}{C_{n - 1}}} \right) - \left( {{2^n} - 1} \right)\]
You know according to binomial expansion $\left( {^{n - 1}{C_0}{ + ^{n - 1}}{C_1}{ + ^{n - 1}}{C_2} + ......{ + ^{n - 1}}{C_{n - 1}}} \right) = {\left( {1 + 1} \right)^{n - 1}} = {2^{n - 1}}$
\[ \Rightarrow 4n \times {2^{n - 1}} - {2^n} + 1\]
\[ \Rightarrow 2n \times {2^n} - {2^n} + 1\]
\[ \Rightarrow 1 + \left( {2n - 1} \right){2^n}\] = RHS
Hence proved.
Note: In this type of question answer can be in any form but take care what you have to prove, you have to give an answer in that form.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

