
Prove that $2{{\sin }^{2}}\dfrac{\pi }{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\pi }{6}{{\cos }^{2}}\dfrac{\pi }{3}=\dfrac{3}{2}$.
Answer
572.4k+ views
Hint: To prove the above trigonometric equation, first of all we have to start solving from the left-hand side. Then convert the equation by replacing $\pi $with ${{180}^{\circ }}$. After that we can solve $\operatorname{cosec}{{210}^{\circ }}$, but before that we can first find the value for $\sin {{210}^{\circ }}$ and then find $\operatorname{cosec}{{210}^{\circ }}$ by taking the reciprocal of $\sin {{210}^{\circ }}$. Then substitute the values and square the values. Then we have to solve it to reach the final answer.
Complete step-by-step answer:
First of all we have to start from the left-hand side, so,
L.H.S: $2{{\sin }^{2}}\dfrac{\pi }{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\pi }{6}{{\cos }^{2}}\dfrac{\pi }{3}$.
Now, we have to put $\pi ={{180}^{\circ }}$, so we get,
$2{{\sin }^{2}}\dfrac{{{180}^{\circ }}}{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\times {{180}^{\circ }}}{6}{{\cos }^{2}}\dfrac{{{180}^{\circ }}}{3}$
On further solving, we get,
$2{{\sin }^{2}}{{30}^{\circ }}+{{\operatorname{cosec}}^{2}}{{210}^{\circ }}{{\cos }^{2}}{{60}^{\circ }}$
Now, we know the value of $\sin {{30}^{\circ }}$ and $\cos {{60}^{\circ }}$, but we have to find the value of $\operatorname{cosec}{{210}^{\circ }}$. To find that value, first we have to find the value of $\sin {{210}^{\circ }}$.
We can write $\sin {{210}^{\circ }}$ as,
$\sin {{210}^{\circ }}=\sin (180+30)$
$\Rightarrow -\sin {{30}^{\circ }}$
$\Rightarrow -\dfrac{1}{2}$
We got $\sin (180+30)=\dfrac{-1}{2}$ because $\sin (180+30)$lies in the third quadrant and in the third quadrant the value of sin is negative. That is why $\sin (180+30)=\dfrac{-1}{2}$. We have to remember the signs of the trigonometric function in each quadrant
As we have got the value of $\sin {{210}^{\circ }}$, we can find the value of $\operatorname{cosec}{{210}^{\circ }}$ by taking the reciprocal of $\sin {{210}^{\circ }}$.
So, the value of $\operatorname{cosec}{{210}^{\circ }}=\left( \dfrac{1}{\left( \dfrac{-1}{2} \right)} \right)=-2$.
Now, we can write as,
L.H.S: $2{{\sin }^{2}}\dfrac{\pi }{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\pi }{6}{{\cos }^{2}}\dfrac{\pi }{3}$
$\Rightarrow 2{{\sin }^{2}}{{30}^{\circ }}+{{\operatorname{cosec}}^{2}}{{210}^{\circ }}{{\cos }^{2}}{{60}^{\circ }}$
We know the value of $\sin {{30}^{\circ }}=\dfrac{1}{2}$ and $\cos {{60}^{\circ }}=\dfrac{1}{2}$. On substituting the values we get,
$\Rightarrow 2{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( -2 \right)}^{2}}\times {{\left( \dfrac{1}{2} \right)}^{2}}$
On solving, we get,
$\Rightarrow 2\left( \dfrac{1}{4} \right)+4\times \left( \dfrac{1}{4} \right)$
On further solving, we get
$\Rightarrow \left( \dfrac{1}{2} \right)+1$
$\Rightarrow \dfrac{3}{2}=R.H.S$
Hence proved that $2{{\sin }^{2}}\dfrac{\pi }{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\pi }{6}{{\cos }^{2}}\dfrac{\pi }{3}=\dfrac{3}{2}$.
Note: The alternative method for finding $\sin {{210}^{\circ }}$ is that, it can also be written as,
$\sin {{210}^{\circ }}=\sin (270-60)$
We know that, $\sin (270-60)=-\cos {{60}^{\circ }}$
Therefore, we get the value of $\sin {{210}^{\circ }}$ is $-\dfrac{1}{2}$.
So, it is important to keep in mind the changes of sign in each quadrant.
Complete step-by-step answer:
First of all we have to start from the left-hand side, so,
L.H.S: $2{{\sin }^{2}}\dfrac{\pi }{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\pi }{6}{{\cos }^{2}}\dfrac{\pi }{3}$.
Now, we have to put $\pi ={{180}^{\circ }}$, so we get,
$2{{\sin }^{2}}\dfrac{{{180}^{\circ }}}{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\times {{180}^{\circ }}}{6}{{\cos }^{2}}\dfrac{{{180}^{\circ }}}{3}$
On further solving, we get,
$2{{\sin }^{2}}{{30}^{\circ }}+{{\operatorname{cosec}}^{2}}{{210}^{\circ }}{{\cos }^{2}}{{60}^{\circ }}$
Now, we know the value of $\sin {{30}^{\circ }}$ and $\cos {{60}^{\circ }}$, but we have to find the value of $\operatorname{cosec}{{210}^{\circ }}$. To find that value, first we have to find the value of $\sin {{210}^{\circ }}$.
We can write $\sin {{210}^{\circ }}$ as,
$\sin {{210}^{\circ }}=\sin (180+30)$
$\Rightarrow -\sin {{30}^{\circ }}$
$\Rightarrow -\dfrac{1}{2}$
We got $\sin (180+30)=\dfrac{-1}{2}$ because $\sin (180+30)$lies in the third quadrant and in the third quadrant the value of sin is negative. That is why $\sin (180+30)=\dfrac{-1}{2}$. We have to remember the signs of the trigonometric function in each quadrant
As we have got the value of $\sin {{210}^{\circ }}$, we can find the value of $\operatorname{cosec}{{210}^{\circ }}$ by taking the reciprocal of $\sin {{210}^{\circ }}$.
So, the value of $\operatorname{cosec}{{210}^{\circ }}=\left( \dfrac{1}{\left( \dfrac{-1}{2} \right)} \right)=-2$.
Now, we can write as,
L.H.S: $2{{\sin }^{2}}\dfrac{\pi }{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\pi }{6}{{\cos }^{2}}\dfrac{\pi }{3}$
$\Rightarrow 2{{\sin }^{2}}{{30}^{\circ }}+{{\operatorname{cosec}}^{2}}{{210}^{\circ }}{{\cos }^{2}}{{60}^{\circ }}$
We know the value of $\sin {{30}^{\circ }}=\dfrac{1}{2}$ and $\cos {{60}^{\circ }}=\dfrac{1}{2}$. On substituting the values we get,
$\Rightarrow 2{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( -2 \right)}^{2}}\times {{\left( \dfrac{1}{2} \right)}^{2}}$
On solving, we get,
$\Rightarrow 2\left( \dfrac{1}{4} \right)+4\times \left( \dfrac{1}{4} \right)$
On further solving, we get
$\Rightarrow \left( \dfrac{1}{2} \right)+1$
$\Rightarrow \dfrac{3}{2}=R.H.S$
Hence proved that $2{{\sin }^{2}}\dfrac{\pi }{6}+{{\operatorname{cosec}}^{2}}\dfrac{7\pi }{6}{{\cos }^{2}}\dfrac{\pi }{3}=\dfrac{3}{2}$.
Note: The alternative method for finding $\sin {{210}^{\circ }}$ is that, it can also be written as,
$\sin {{210}^{\circ }}=\sin (270-60)$
We know that, $\sin (270-60)=-\cos {{60}^{\circ }}$
Therefore, we get the value of $\sin {{210}^{\circ }}$ is $-\dfrac{1}{2}$.
So, it is important to keep in mind the changes of sign in each quadrant.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

