
Prove that:
$2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{{7\pi }}{6}{\cos ^2}\dfrac{\pi }{3} = \dfrac{3}{2}$
Answer
576.3k+ views
Hint: Note that, \[{\text{since }}\dfrac{{7\pi }}{6}{\text{ is in third quadrant, therefore }}\operatorname{cosec} \dfrac{{7\pi }}{6}{\text{ is negative}}{\text{.}}\]
Then in the left hand side, substitute the values of \[\sin \dfrac{\pi }{6}\], \[\operatorname{cosec} \dfrac{{7\pi }}{6}\] and \[\cos \dfrac{\pi }{3}\].
And on solving we get the desired result.
Complete step-by-step answer:
Given to prove that $2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{{7\pi }}{6}{\cos ^2}\dfrac{\pi }{3} = \dfrac{3}{2}$
Left hand side is given by,
\[2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{{7\pi }}{6}{\cos ^2}\dfrac{\pi }{3}\]
The above expression can be written as,
\[ = 2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\left( {\pi + \dfrac{\pi }{6}} \right){\cos ^2}\dfrac{\pi }{3}\]
Since, \[\dfrac{{7\pi }}{6}\] is in the third quadrant, therefore \[\operatorname{cosec} \dfrac{{7\pi }}{6}{\text{ }}\] is negative,
\[ = 2{\sin ^2}\dfrac{\pi }{6} + {\left( { - \operatorname{cosec} \dfrac{\pi }{6}} \right)^2}{\cos ^2}\dfrac{\pi }{3}{\text{ }}\]
On simplification we get,
\[ = 2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{\pi }{6}{\cos ^2}\dfrac{\pi }{3}\]
Using \[\sin \dfrac{\pi }{6} = \dfrac{1}{2},\cos \dfrac{\pi }{3} = \dfrac{1}{2},\cos ec\dfrac{\pi }{6} = 2\], we get,
\[ = 2 \times {\left( {\dfrac{1}{2}} \right)^2} + {\left( 2 \right)^2} \times {\left( {\dfrac{1}{2}} \right)^2}\]
On squaring we get,
\[ = \left( {2 \times \dfrac{1}{4}} \right) + \left( {4 \times \dfrac{1}{4}} \right)\]
On simplification we get,
\[ = \dfrac{1}{2} + 1\]
\[ = \dfrac{3}{2}\]
= Right hand side
Hence, $2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{{7\pi }}{6}{\cos ^2}\dfrac{\pi }{3} = \dfrac{3}{2}$ (proved).
Note: Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Also, the trigonometric ratios of the standard angles are given by
Then in the left hand side, substitute the values of \[\sin \dfrac{\pi }{6}\], \[\operatorname{cosec} \dfrac{{7\pi }}{6}\] and \[\cos \dfrac{\pi }{3}\].
And on solving we get the desired result.
Complete step-by-step answer:
Given to prove that $2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{{7\pi }}{6}{\cos ^2}\dfrac{\pi }{3} = \dfrac{3}{2}$
Left hand side is given by,
\[2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{{7\pi }}{6}{\cos ^2}\dfrac{\pi }{3}\]
The above expression can be written as,
\[ = 2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\left( {\pi + \dfrac{\pi }{6}} \right){\cos ^2}\dfrac{\pi }{3}\]
Since, \[\dfrac{{7\pi }}{6}\] is in the third quadrant, therefore \[\operatorname{cosec} \dfrac{{7\pi }}{6}{\text{ }}\] is negative,
\[ = 2{\sin ^2}\dfrac{\pi }{6} + {\left( { - \operatorname{cosec} \dfrac{\pi }{6}} \right)^2}{\cos ^2}\dfrac{\pi }{3}{\text{ }}\]
On simplification we get,
\[ = 2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{\pi }{6}{\cos ^2}\dfrac{\pi }{3}\]
Using \[\sin \dfrac{\pi }{6} = \dfrac{1}{2},\cos \dfrac{\pi }{3} = \dfrac{1}{2},\cos ec\dfrac{\pi }{6} = 2\], we get,
\[ = 2 \times {\left( {\dfrac{1}{2}} \right)^2} + {\left( 2 \right)^2} \times {\left( {\dfrac{1}{2}} \right)^2}\]
On squaring we get,
\[ = \left( {2 \times \dfrac{1}{4}} \right) + \left( {4 \times \dfrac{1}{4}} \right)\]
On simplification we get,
\[ = \dfrac{1}{2} + 1\]
\[ = \dfrac{3}{2}\]
= Right hand side
Hence, $2{\sin ^2}\dfrac{\pi }{6} + {\operatorname{cosec} ^2}\dfrac{{7\pi }}{6}{\cos ^2}\dfrac{\pi }{3} = \dfrac{3}{2}$ (proved).
Note: Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Also, the trigonometric ratios of the standard angles are given by
| \[0^\circ \] | \[30^\circ \] | \[45^\circ \] | \[60^\circ \] | \[90^\circ \] | |
| \[\operatorname{Sin} x\] | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
| \[\operatorname{Cos} x\] | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
| \[\operatorname{Tan} x\] | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Undefined |
| \[Cotx\] | undefined | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
| \[\cos ecx\] | undefined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
| \[\operatorname{Sec} x\] | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Undefined |
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

