
Prove that:
$2{\sin ^2}\dfrac{{3\pi }}{4} + 2{\cos ^2}\dfrac{\pi }{4} + 2{\sec ^2}\dfrac{\pi }{3} = 10$
Answer
576.3k+ views
Hint: Note that, \[{\text{since }}\dfrac{{3\pi }}{4}{\text{ is in second quadrant, therefore sin}}\dfrac{{3\pi }}{4}{\text{ is positive}}{\text{.}}\]
Then in the left hand side, substitute the values of \[\sin \dfrac{{3\pi }}{4}\], \[\cos \dfrac{\pi }{4}\] and \[\sec \dfrac{\pi }{3}\].
In solving it we will reach our desired solution.
Complete step-by-step answer:
Given that, to prove $2{\sin ^2}\dfrac{{3\pi }}{4} + 2{\cos ^2}\dfrac{\pi }{4} + 2{\sec ^2}\dfrac{\pi }{3} = 10$
Left hand side:
$ = 2{\sin ^2}\dfrac{{3\pi }}{4} + 2{\cos ^2}\dfrac{\pi }{4} + 2{\sec ^2}\dfrac{\pi }{3}$
The above expression can be written as,
\[ = 2{\sin ^2}\left( {\pi - \dfrac{\pi }{4}} \right) + 2{\cos ^2}\dfrac{\pi }{4} + 2{\sec ^2}\dfrac{\pi }{3}\]
Since \[\dfrac{{3\pi }}{4}\] is in the second quadrant, therefore \[{\text{sin}}\dfrac{{3\pi }}{4}\] is positive
\[ = 2{\left( {\sin \dfrac{\pi }{4}} \right)^2} + 2{\cos ^2}\dfrac{\pi }{4} + 2{\sec ^2}\dfrac{\pi }{3}\]
Using, \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},sec\dfrac{\pi }{3} = 2\], we get,
\[ = 2 \times {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} + 2 \times {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} + 2 \times {\left( 2 \right)^2}\]
On squaring we get,
\[ = {2} \times \dfrac{1}{{{2}}} + {2} \times \dfrac{1}{{{2}}} + 2 \times 4\]
On simplification we get,
\[ = 1 + 1 + 8\]
\[ = 10\]
= Right hand side
Therefore, $2{\sin ^2}\dfrac{{3\pi }}{4} + 2{\cos ^2}\dfrac{\pi }{4} + 2{\sec ^2}\dfrac{\pi }{3} = 10$ (proved).
Note: Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Also, the trigonometric ratios of the standard angles are given by
Then in the left hand side, substitute the values of \[\sin \dfrac{{3\pi }}{4}\], \[\cos \dfrac{\pi }{4}\] and \[\sec \dfrac{\pi }{3}\].
In solving it we will reach our desired solution.
Complete step-by-step answer:
Given that, to prove $2{\sin ^2}\dfrac{{3\pi }}{4} + 2{\cos ^2}\dfrac{\pi }{4} + 2{\sec ^2}\dfrac{\pi }{3} = 10$
Left hand side:
$ = 2{\sin ^2}\dfrac{{3\pi }}{4} + 2{\cos ^2}\dfrac{\pi }{4} + 2{\sec ^2}\dfrac{\pi }{3}$
The above expression can be written as,
\[ = 2{\sin ^2}\left( {\pi - \dfrac{\pi }{4}} \right) + 2{\cos ^2}\dfrac{\pi }{4} + 2{\sec ^2}\dfrac{\pi }{3}\]
Since \[\dfrac{{3\pi }}{4}\] is in the second quadrant, therefore \[{\text{sin}}\dfrac{{3\pi }}{4}\] is positive
\[ = 2{\left( {\sin \dfrac{\pi }{4}} \right)^2} + 2{\cos ^2}\dfrac{\pi }{4} + 2{\sec ^2}\dfrac{\pi }{3}\]
Using, \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},sec\dfrac{\pi }{3} = 2\], we get,
\[ = 2 \times {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} + 2 \times {\left( {\dfrac{1}{{\sqrt 2 }}} \right)^2} + 2 \times {\left( 2 \right)^2}\]
On squaring we get,
\[ = {2} \times \dfrac{1}{{{2}}} + {2} \times \dfrac{1}{{{2}}} + 2 \times 4\]
On simplification we get,
\[ = 1 + 1 + 8\]
\[ = 10\]
= Right hand side
Therefore, $2{\sin ^2}\dfrac{{3\pi }}{4} + 2{\cos ^2}\dfrac{\pi }{4} + 2{\sec ^2}\dfrac{\pi }{3} = 10$ (proved).
Note: Note the following important formulae:
1.$\cos x = \dfrac{1}{{\sec x}}$ , $\sin x = \dfrac{1}{{\cos ecx}}$ , $\tan x = \dfrac{1}{{\cot x}}$
2.${\sin ^2}x + {\cos ^2}x = 1$
3.\[{\sec ^2}x - {\tan ^2}x = 1\]
4.\[{\operatorname{cosec} ^2}x - {\cot ^2}x = 1\]
5.$\sin ( - x) = - \sin x$
6.$\cos ( - x) = \cos x$
7.$\tan ( - x) = - \tan x$
8.$\sin \left( {2n\pi \pm x} \right) = \sin x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
9.$\cos \left( {2n\pi \pm x} \right) = \cos x{\text{ , period 2}}\pi {\text{ or 3}}{60^ \circ }$
10.$\tan \left( {n\pi \pm x} \right) = \tan x{\text{ , period }}\pi {\text{ or 18}}{0^ \circ }$
Sign convention:
$\sin 2x = 2\sin x\cos x$
$\cos 2x = {\cos ^2}x - {\sin ^2}x = 1 - 2{\sin ^2}x = 2{\cos ^2}x - 1$
$\tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}} = \dfrac{2}{{\cot x - \tan x}}$
Also, the trigonometric ratios of the standard angles are given by
| \[0^\circ \] | \[30^\circ \] | \[45^\circ \] | \[60^\circ \] | \[90^\circ \] | |
| \[\operatorname{Sin} x\] | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{{\sqrt 3 }}{2}$ | 1 |
| \[\operatorname{Cos} x\] | 1 | $\dfrac{{\sqrt 3 }}{2}$ | $\dfrac{1}{{\sqrt 2 }}$ | $\dfrac{1}{2}$ | 0 |
| \[\operatorname{Tan} x\] | 0 | $\dfrac{1}{{\sqrt 3 }}$ | 1 | $\sqrt 3 $ | Undefined |
| \[Cotx\] | undefined | $\sqrt 3 $ | 1 | $\dfrac{1}{{\sqrt 3 }}$ | 0 |
| \[\cos ecx\] | undefined | 2 | $\sqrt 2 $ | $\dfrac{2}{{\sqrt 3 }}$ | 1 |
| \[\operatorname{Sec} x\] | 1 | $\dfrac{2}{{\sqrt 3 }}$ | $\sqrt 2 $ | 2 | Undefined |
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

