
Prove that \[1.2 + 2.3 + .......n(n + 1) = \dfrac{{n(n + 1)(n + 2)}}{3}\] in mathematical induction.
Answer
577.5k+ views
Hint: Here we are given a typical mathematical induction problem to deal with. First we need to check if the expression is true for \[n = 1\], then we need to consider that it is true for \[n = k\;\]and then need to check if it’s true for \[n = k + 1\], if true for \[n = k + 1\] we can say that the equations holds true.
Complete step-by-step answer:
We shall prove the result by principle of mathematical induction.
\[p(n) = 1.2 + 2.3 + .......n(n + 1) = \dfrac{{n(n + 1)(n + 2)}}{3}\]
First on checking for \[n = 1\],
We have,
LHS: \[1.2 = 2\]
RHS: \[\dfrac{{n(n + 1)(n + 2)}}{3}\]
On substituting the value of n we get,
\[
= \dfrac{{1(1 + 1)(1 + 2)}}{3} \\
= \dfrac{{1.2.3}}{3} \\
= 2. \\
\]
As \[{\text{LHS = RHS}}\]
Hence p(n) is true for n=1.
Now,
Let us assume the result is true for \[n = k\;\] i.e.,
\[p(k) = 1.2 + 2.3 + .....k\left( {k + 1} \right) = \dfrac{{k \times \left( {k + 1} \right) \times \left( {k + 2} \right)}}{3}\;\]
We shall prove that p(n) is true for \[n = k + 1\].
that is, to prove \[p(k + 1) = 1.2 + 2.3..... + k\left( {k + 1} \right) + \left( {k + 1} \right)\left( {k + 2} \right) = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}{3}\]
Consider LHS: \[1.2 + 2.3..... + k\left( {k + 1} \right) + \left( {k + 1} \right)\left( {k + 2} \right)\]
As, p(k) is true we have \[p(k) = 1.2 + 2.3 + .....k\left( {k + 1} \right) = \dfrac{{k \times \left( {k + 1} \right) \times \left( {k + 2} \right)}}{3}\;\],
Hence on substituting the above value we get,
\[ = \dfrac{{k \times \left( {k + 1} \right) \times \left( {k + 2} \right)}}{3} + \left( {k + 1} \right)\left( {k + 2} \right)\]
Taking common, \[\left( {k + 1} \right)\left( {k + 2} \right)\], we get,
\[ = \left( {k + 1} \right)\left( {k + 2} \right)[\dfrac{k}{3} + 1]\]
On simplifying we get,
\[ = \left( {k + 1} \right)\left( {k + 2} \right)[\dfrac{{k + 3}}{3}]\]
\[ = [\dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)(k + 3)}}{3}]\]
=RHS.
Hence the p(n) holds for \[n = k + 1\].
As, p(n) is true for \[n = 1\], \[n = k\;\]and \[n = k + 1\], hence we can say that \[{\text{p(n)}}\] is true\[\forall n \in N\].
Hence, proved.
Note: Mathematical induction is a mathematical proof technique. It is essentially used to prove that a statement \[P\left( n \right)\]holds for every natural number \[n\; = \;0,\;1,\;2,\;3,\;\]. . . ; that is, the overall statement is a sequence of infinitely many cases \[P\left( 0 \right),\;P\left( 1 \right),\;P\left( 2 \right),\;P\left( 3 \right),\]. . . . . We generally assume that \[P\left( n \right)\]is true for \[n = k\;\]and using this we prove that \[P\left( n \right)\] is true for \[n = k + 1\].
Complete step-by-step answer:
We shall prove the result by principle of mathematical induction.
\[p(n) = 1.2 + 2.3 + .......n(n + 1) = \dfrac{{n(n + 1)(n + 2)}}{3}\]
First on checking for \[n = 1\],
We have,
LHS: \[1.2 = 2\]
RHS: \[\dfrac{{n(n + 1)(n + 2)}}{3}\]
On substituting the value of n we get,
\[
= \dfrac{{1(1 + 1)(1 + 2)}}{3} \\
= \dfrac{{1.2.3}}{3} \\
= 2. \\
\]
As \[{\text{LHS = RHS}}\]
Hence p(n) is true for n=1.
Now,
Let us assume the result is true for \[n = k\;\] i.e.,
\[p(k) = 1.2 + 2.3 + .....k\left( {k + 1} \right) = \dfrac{{k \times \left( {k + 1} \right) \times \left( {k + 2} \right)}}{3}\;\]
We shall prove that p(n) is true for \[n = k + 1\].
that is, to prove \[p(k + 1) = 1.2 + 2.3..... + k\left( {k + 1} \right) + \left( {k + 1} \right)\left( {k + 2} \right) = \dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}{3}\]
Consider LHS: \[1.2 + 2.3..... + k\left( {k + 1} \right) + \left( {k + 1} \right)\left( {k + 2} \right)\]
As, p(k) is true we have \[p(k) = 1.2 + 2.3 + .....k\left( {k + 1} \right) = \dfrac{{k \times \left( {k + 1} \right) \times \left( {k + 2} \right)}}{3}\;\],
Hence on substituting the above value we get,
\[ = \dfrac{{k \times \left( {k + 1} \right) \times \left( {k + 2} \right)}}{3} + \left( {k + 1} \right)\left( {k + 2} \right)\]
Taking common, \[\left( {k + 1} \right)\left( {k + 2} \right)\], we get,
\[ = \left( {k + 1} \right)\left( {k + 2} \right)[\dfrac{k}{3} + 1]\]
On simplifying we get,
\[ = \left( {k + 1} \right)\left( {k + 2} \right)[\dfrac{{k + 3}}{3}]\]
\[ = [\dfrac{{\left( {k + 1} \right)\left( {k + 2} \right)(k + 3)}}{3}]\]
=RHS.
Hence the p(n) holds for \[n = k + 1\].
As, p(n) is true for \[n = 1\], \[n = k\;\]and \[n = k + 1\], hence we can say that \[{\text{p(n)}}\] is true\[\forall n \in N\].
Hence, proved.
Note: Mathematical induction is a mathematical proof technique. It is essentially used to prove that a statement \[P\left( n \right)\]holds for every natural number \[n\; = \;0,\;1,\;2,\;3,\;\]. . . ; that is, the overall statement is a sequence of infinitely many cases \[P\left( 0 \right),\;P\left( 1 \right),\;P\left( 2 \right),\;P\left( 3 \right),\]. . . . . We generally assume that \[P\left( n \right)\]is true for \[n = k\;\]and using this we prove that \[P\left( n \right)\] is true for \[n = k + 1\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

