
How do you prove $\tan \left( {{90}^{\circ }}+a \right)=-\cot \left( a \right)$ ?
Answer
548.4k+ views
Hint: We are asked to prove that $\tan \left( {{90}^{\circ }}+a \right)=-\cot \left( a \right)$ . To do so, we will learn how $\tan \theta $ is connected to other ratio, we will use that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ , then we will learn how sin and cos expand when they have sum of two terms.
We will use $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ and $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ .
Lastly we will need the knowledge that $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$ .
Complete step by step solution:
We are given to prove that $\tan \left( {{90}^{\circ }}+a \right)=-\cot \left( a \right)$ .
We can see that the left side has $\tan \left( {{90}^{\circ }}+a \right)$ .
It has more terms, so it will be helpful for us to start from there and return to the right hand side that will achieve $-\cot \left( a \right)$ .
To do so, we will start by considering the left hand side.
So, we have $\tan \left( {{90}^{\circ }}+a \right)$ .
Now as we know that tan is nothing but the ratio of sin and cos i.e. $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ .
So, using this on ${{90}^{\circ }}+a$ , we get –
$\Rightarrow \tan \left( {{90}^{\circ }}+a \right)=\dfrac{\sin \left( {{90}^{\circ }}+a \right)}{\cos \left( {{90}^{\circ }}+a \right)}$ ……………………………………. (1)
Now, to solve it further we will expand our sin and cos function.
As we know that $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ .
So, using $A={{90}^{\circ }}$ and $B=\theta $ , we get –
$\Rightarrow \sin \left( {{90}^{\circ }}+a \right)=\sin {{90}^{\circ }}\operatorname{cosa}+\cos {{90}^{\circ }}\sin a$
As $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$
So, we get –
$\begin{align}
& \Rightarrow \cos a+0 \\
& =\cos a \\
\end{align}$
So, $\sin \left( {{90}^{\circ }}+a \right)=\cos a$ ……………………………… (2)
Now as we know that $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ .
So using ${{90}^{\circ }}$ as A and $\theta $ as B, we get –
$\Rightarrow \cos \left( {{90}^{\circ }}+a \right)=\cos {{90}^{\circ }}\cos a-\sin {{90}^{\circ }}\sin a$
As $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$ , so we get –
$\begin{align}
& =0-\sin a \\
& =-\sin a \\
\end{align}$
So, $\cos \left( {{90}^{\circ }}+a \right)=-\sin a$ ………………………… (3)
So, using equation (2) and (3) in equation (1), we get –
$\Rightarrow \tan \left( {{90}^{\circ }}+a \right)=\dfrac{\sin \left( {{90}^{\circ }}+a \right)}{\cos \left( {{90}^{\circ }}+a \right)}$
As $\sin \left( {{90}^{\circ }}+a \right)=\cos a$ and $\cos \left( {{90}^{\circ }}+a \right)=-\sin a$
So, $=\dfrac{\cos a}{-\sin a}$
By simplifying, we get –
$=-\dfrac{\cos a}{\sin a}$
As we know that $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ .
So, we get –
$\Rightarrow \dfrac{\cos a}{\sin a}=\cot a$
Hence we get –
$\tan \left( {{90}^{\circ }}+a \right)=-\cot a$.
Note: Just like this there are other ratio which are related to one another, we can use similar approach to solve such relation are –
1, $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $
2, $\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $
3, $\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta $
4, $\sec \left( {{90}^{\circ }}-\theta \right)=\cos ec\theta $
5, $\cos \left( {{180}^{\circ }}+x \right)=-\cos x$
6, $\sin \left( {{180}^{\circ }}+x \right)=-\sin x$
We can use the same way to verify these identity, remember $\sin \left( {{180}^{\circ }} \right)=0$ and $\cos \left( {{180}^{\circ }} \right)=-1$ .
We will use $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ and $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ .
Lastly we will need the knowledge that $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$ .
Complete step by step solution:
We are given to prove that $\tan \left( {{90}^{\circ }}+a \right)=-\cot \left( a \right)$ .
We can see that the left side has $\tan \left( {{90}^{\circ }}+a \right)$ .
It has more terms, so it will be helpful for us to start from there and return to the right hand side that will achieve $-\cot \left( a \right)$ .
To do so, we will start by considering the left hand side.
So, we have $\tan \left( {{90}^{\circ }}+a \right)$ .
Now as we know that tan is nothing but the ratio of sin and cos i.e. $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ .
So, using this on ${{90}^{\circ }}+a$ , we get –
$\Rightarrow \tan \left( {{90}^{\circ }}+a \right)=\dfrac{\sin \left( {{90}^{\circ }}+a \right)}{\cos \left( {{90}^{\circ }}+a \right)}$ ……………………………………. (1)
Now, to solve it further we will expand our sin and cos function.
As we know that $\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B$ .
So, using $A={{90}^{\circ }}$ and $B=\theta $ , we get –
$\Rightarrow \sin \left( {{90}^{\circ }}+a \right)=\sin {{90}^{\circ }}\operatorname{cosa}+\cos {{90}^{\circ }}\sin a$
As $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$
So, we get –
$\begin{align}
& \Rightarrow \cos a+0 \\
& =\cos a \\
\end{align}$
So, $\sin \left( {{90}^{\circ }}+a \right)=\cos a$ ……………………………… (2)
Now as we know that $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ .
So using ${{90}^{\circ }}$ as A and $\theta $ as B, we get –
$\Rightarrow \cos \left( {{90}^{\circ }}+a \right)=\cos {{90}^{\circ }}\cos a-\sin {{90}^{\circ }}\sin a$
As $\sin {{90}^{\circ }}=1$ and $\cos {{90}^{\circ }}=0$ , so we get –
$\begin{align}
& =0-\sin a \\
& =-\sin a \\
\end{align}$
So, $\cos \left( {{90}^{\circ }}+a \right)=-\sin a$ ………………………… (3)
So, using equation (2) and (3) in equation (1), we get –
$\Rightarrow \tan \left( {{90}^{\circ }}+a \right)=\dfrac{\sin \left( {{90}^{\circ }}+a \right)}{\cos \left( {{90}^{\circ }}+a \right)}$
As $\sin \left( {{90}^{\circ }}+a \right)=\cos a$ and $\cos \left( {{90}^{\circ }}+a \right)=-\sin a$
So, $=\dfrac{\cos a}{-\sin a}$
By simplifying, we get –
$=-\dfrac{\cos a}{\sin a}$
As we know that $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ .
So, we get –
$\Rightarrow \dfrac{\cos a}{\sin a}=\cot a$
Hence we get –
$\tan \left( {{90}^{\circ }}+a \right)=-\cot a$.
Note: Just like this there are other ratio which are related to one another, we can use similar approach to solve such relation are –
1, $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $
2, $\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $
3, $\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta $
4, $\sec \left( {{90}^{\circ }}-\theta \right)=\cos ec\theta $
5, $\cos \left( {{180}^{\circ }}+x \right)=-\cos x$
6, $\sin \left( {{180}^{\circ }}+x \right)=-\sin x$
We can use the same way to verify these identity, remember $\sin \left( {{180}^{\circ }} \right)=0$ and $\cos \left( {{180}^{\circ }} \right)=-1$ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

