
How do you prove $ \sec x\left( {{\csc }^{2}}x \right)-{{\csc }^{2}}x=\dfrac{\sec x}{1+\cos x} $ ?
Answer
559.5k+ views
Hint: We first take common out from the left-hand part of the equation of $ \sec x\left( {{\csc }^{2}}x \right)-{{\csc }^{2}}x $ . Then we simplify the equation. We convert the denominator using the relation $ \sec x=\dfrac{1}{\cos x} $ . Then we use the theorem \[{{\cos }^{2}}x+{{\sin }^{2}}x=1\]. We eliminate the part $ \left( 1-\cos x \right) $ . After elimination we get the right-hand side of the equation.
Complete step by step answer:
We have to prove the trigonometric equation $ \sec x\left( {{\csc }^{2}}x \right)-{{\csc }^{2}}x=\dfrac{\sec x}{1+\cos x} $ .
We take the left-hand side of the equation $ \sec x\left( \cos e{{c}^{2}}x \right)-\cos e{{c}^{2}}x $ and prove the right-side part. We can take $ {{\csc }^{2}}x $ as common from both terms.
We get $ \sec x\left( {{\csc }^{2}}x \right)-{{\csc }^{2}}x={{\csc }^{2}}x\left( \sec x-1 \right) $ .
We solve the equation inside the brackets.
The part is $ \left( \sec x-1 \right) $ . We know that $ \sec x=\dfrac{1}{\cos x} $ .
Therefore, $ \left( \sec x-1 \right)=\dfrac{1}{\cos x}-1=\dfrac{1-\cos x}{\cos x} $ .
We know the relation between $ \csc x $ and $ \sin x $ is $ \csc x=\dfrac{1}{\sin x} $ .
This relation gives $ {{\csc }^{2}}x=\dfrac{1}{{{\sin }^{2}}x} $ .
The revised form of the equation is $ {{\csc }^{2}}x\left( \sec x-1 \right)=\dfrac{1}{{{\sin }^{2}}x}\left( \dfrac{1-\cos x}{\cos x} \right) $ .
We now use the identity theorem of trigonometry $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ which gives us $ {{\sin }^{2}}x=1-{{\cos }^{2}}x $ . We place the value in the equation and get
$ \dfrac{1}{{{\sin }^{2}}x}\left( \dfrac{1-\cos x}{\cos x} \right)=\dfrac{1}{1-{{\cos }^{2}}x}\times \dfrac{\left( 1-\cos x \right)}{\cos x} $ .
The denominator is in the form of $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ . We now apply the identity theorem for the term $ 1-{{\cos }^{2}}x $ . We assume the values $ a=1;b=\cos x $ .
Applying the theorem, we get $ 1-{{\cos }^{2}}x=\left( 1+\cos x \right)\left( 1-\cos x \right) $ .
The equation becomes $ \dfrac{1}{1-{{\cos }^{2}}x}\times \dfrac{\left( 1-\cos x \right)}{\cos x}=\dfrac{1}{\left( 1-\cos x \right)\left( 1+\cos x \right)}\times \dfrac{\left( 1-\cos x \right)}{\cos x} $ .
We can now eliminate the $ \left( 1-\cos x \right) $ from both denominator and numerator.
The equation becomes $ \dfrac{1}{\left( 1-\cos x \right)\left( 1+\cos x \right)}\times \dfrac{\left( 1-\cos x \right)}{\cos x}=\dfrac{1}{\cos x\left( 1+\cos x \right)} $ .
Now we apply the theorem $ \sec x=\dfrac{1}{\cos x} $ again to convert the $ \cos x $ .
The final form is $ \dfrac{1}{\cos x\left( 1+\cos x \right)}=\dfrac{\sec x}{\left( 1+\cos x \right)} $ .
Thus proved $ \sec x\left( {{\csc }^{2}}x \right)-{{\csc }^{2}}x=\dfrac{\sec x}{1+\cos x} $.
Note:
It is important to remember that the condition to eliminate the $ \left( 1-\cos x \right) $ from both denominator and numerator is $ \left( 1-\cos x \right)\ne 0 $ . No domain is given for the variable $ x $ . The simplified condition will be $ x\ne n\pi \pm \dfrac{\pi }{2},n\in \mathbb{Z} $ .
Complete step by step answer:
We have to prove the trigonometric equation $ \sec x\left( {{\csc }^{2}}x \right)-{{\csc }^{2}}x=\dfrac{\sec x}{1+\cos x} $ .
We take the left-hand side of the equation $ \sec x\left( \cos e{{c}^{2}}x \right)-\cos e{{c}^{2}}x $ and prove the right-side part. We can take $ {{\csc }^{2}}x $ as common from both terms.
We get $ \sec x\left( {{\csc }^{2}}x \right)-{{\csc }^{2}}x={{\csc }^{2}}x\left( \sec x-1 \right) $ .
We solve the equation inside the brackets.
The part is $ \left( \sec x-1 \right) $ . We know that $ \sec x=\dfrac{1}{\cos x} $ .
Therefore, $ \left( \sec x-1 \right)=\dfrac{1}{\cos x}-1=\dfrac{1-\cos x}{\cos x} $ .
We know the relation between $ \csc x $ and $ \sin x $ is $ \csc x=\dfrac{1}{\sin x} $ .
This relation gives $ {{\csc }^{2}}x=\dfrac{1}{{{\sin }^{2}}x} $ .
The revised form of the equation is $ {{\csc }^{2}}x\left( \sec x-1 \right)=\dfrac{1}{{{\sin }^{2}}x}\left( \dfrac{1-\cos x}{\cos x} \right) $ .
We now use the identity theorem of trigonometry $ {{\sin }^{2}}x+{{\cos }^{2}}x=1 $ which gives us $ {{\sin }^{2}}x=1-{{\cos }^{2}}x $ . We place the value in the equation and get
$ \dfrac{1}{{{\sin }^{2}}x}\left( \dfrac{1-\cos x}{\cos x} \right)=\dfrac{1}{1-{{\cos }^{2}}x}\times \dfrac{\left( 1-\cos x \right)}{\cos x} $ .
The denominator is in the form of $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ . We now apply the identity theorem for the term $ 1-{{\cos }^{2}}x $ . We assume the values $ a=1;b=\cos x $ .
Applying the theorem, we get $ 1-{{\cos }^{2}}x=\left( 1+\cos x \right)\left( 1-\cos x \right) $ .
The equation becomes $ \dfrac{1}{1-{{\cos }^{2}}x}\times \dfrac{\left( 1-\cos x \right)}{\cos x}=\dfrac{1}{\left( 1-\cos x \right)\left( 1+\cos x \right)}\times \dfrac{\left( 1-\cos x \right)}{\cos x} $ .
We can now eliminate the $ \left( 1-\cos x \right) $ from both denominator and numerator.
The equation becomes $ \dfrac{1}{\left( 1-\cos x \right)\left( 1+\cos x \right)}\times \dfrac{\left( 1-\cos x \right)}{\cos x}=\dfrac{1}{\cos x\left( 1+\cos x \right)} $ .
Now we apply the theorem $ \sec x=\dfrac{1}{\cos x} $ again to convert the $ \cos x $ .
The final form is $ \dfrac{1}{\cos x\left( 1+\cos x \right)}=\dfrac{\sec x}{\left( 1+\cos x \right)} $ .
Thus proved $ \sec x\left( {{\csc }^{2}}x \right)-{{\csc }^{2}}x=\dfrac{\sec x}{1+\cos x} $.
Note:
It is important to remember that the condition to eliminate the $ \left( 1-\cos x \right) $ from both denominator and numerator is $ \left( 1-\cos x \right)\ne 0 $ . No domain is given for the variable $ x $ . The simplified condition will be $ x\ne n\pi \pm \dfrac{\pi }{2},n\in \mathbb{Z} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

