
How do you prove: \[\dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }} = \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right)\] ?
Answer
533.7k+ views
Hint: The given question deals with basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as $ \tan x = \dfrac{{\sin x}}{{\cos x}} $ and $ \sec x = \dfrac{1}{{\cos x}} $ . Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem and proving the result given to us.
Complete step by step solution:
In the given problem, we have to prove a trigonometric identity that can be further used in many questions and problems as a direct result and has wide ranging applications. For proving the desired result, we need to first know the definitions of all the six trigonometric ratios.
Now, we need to make the left and right sides of the equation equal.
L.H.S. \[ = \dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }}\]
As we know that $ \tan x = \dfrac{{\sin x}}{{\cos x}} $ and $ \sec x = \dfrac{1}{{\cos x}} $ . So, we get,
\[ = \dfrac{{\cos \theta }}{{1 - \left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)}} + \dfrac{{\sin \theta }}{{1 - \left( {\dfrac{{\cos \theta }}{{\sin \theta }}} \right)}}\]
Taking LCM of fractions, we get,
\[ = \dfrac{{\cos \theta }}{{\left( {\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}} \right)}} + \dfrac{{\sin \theta }}{{\left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}} \right)}}\]
\[ = \dfrac{{{{\cos }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}} + \dfrac{{{{\sin }^2}\theta }}{{\left( {\sin \theta - \cos \theta } \right)}}\]
Taking negative sign common from the last term, we get,
\[ = \dfrac{{{{\cos }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}} - \dfrac{{{{\sin }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}}\]
\[ = \dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}}\]
Factorizing the numerator using algebraic identity $ \left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) $ ,
\[ = \dfrac{{\left( {\cos \theta + \sin \theta } \right)\left( {\cos \theta - \sin \theta } \right)}}{{\left( {\cos \theta - \sin \theta } \right)}}\]
\[ = \left( {\cos \theta + \sin \theta } \right)\]
Multiplying the numerator and denominator by $ \sqrt 2 $ ,
\[ = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta } \right)\]
We know that $ \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} $ and $ \cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} $ .
\[ = \sqrt 2 \left( {\sin \left( {{{45}^ \circ }} \right)\cos \theta + \cos \left( {{{45}^ \circ }} \right)\sin \theta } \right)\]
Using sine compound angle formula, we get,
\[ = \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right) = R.H.S.\]
As the left side of the equation is equal to the right side of the equation, we have,
\[\dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }} = \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right)\]
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.
Complete step by step solution:
In the given problem, we have to prove a trigonometric identity that can be further used in many questions and problems as a direct result and has wide ranging applications. For proving the desired result, we need to first know the definitions of all the six trigonometric ratios.
Now, we need to make the left and right sides of the equation equal.
L.H.S. \[ = \dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }}\]
As we know that $ \tan x = \dfrac{{\sin x}}{{\cos x}} $ and $ \sec x = \dfrac{1}{{\cos x}} $ . So, we get,
\[ = \dfrac{{\cos \theta }}{{1 - \left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)}} + \dfrac{{\sin \theta }}{{1 - \left( {\dfrac{{\cos \theta }}{{\sin \theta }}} \right)}}\]
Taking LCM of fractions, we get,
\[ = \dfrac{{\cos \theta }}{{\left( {\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}} \right)}} + \dfrac{{\sin \theta }}{{\left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}} \right)}}\]
\[ = \dfrac{{{{\cos }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}} + \dfrac{{{{\sin }^2}\theta }}{{\left( {\sin \theta - \cos \theta } \right)}}\]
Taking negative sign common from the last term, we get,
\[ = \dfrac{{{{\cos }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}} - \dfrac{{{{\sin }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}}\]
\[ = \dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}}\]
Factorizing the numerator using algebraic identity $ \left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) $ ,
\[ = \dfrac{{\left( {\cos \theta + \sin \theta } \right)\left( {\cos \theta - \sin \theta } \right)}}{{\left( {\cos \theta - \sin \theta } \right)}}\]
\[ = \left( {\cos \theta + \sin \theta } \right)\]
Multiplying the numerator and denominator by $ \sqrt 2 $ ,
\[ = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta } \right)\]
We know that $ \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} $ and $ \cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} $ .
\[ = \sqrt 2 \left( {\sin \left( {{{45}^ \circ }} \right)\cos \theta + \cos \left( {{{45}^ \circ }} \right)\sin \theta } \right)\]
Using sine compound angle formula, we get,
\[ = \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right) = R.H.S.\]
As the left side of the equation is equal to the right side of the equation, we have,
\[\dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }} = \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right)\]
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

