
How do you prove: \[\dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }} = \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right)\] ?
Answer
548.7k+ views
Hint: The given question deals with basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as $ \tan x = \dfrac{{\sin x}}{{\cos x}} $ and $ \sec x = \dfrac{1}{{\cos x}} $ . Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem and proving the result given to us.
Complete step by step solution:
In the given problem, we have to prove a trigonometric identity that can be further used in many questions and problems as a direct result and has wide ranging applications. For proving the desired result, we need to first know the definitions of all the six trigonometric ratios.
Now, we need to make the left and right sides of the equation equal.
L.H.S. \[ = \dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }}\]
As we know that $ \tan x = \dfrac{{\sin x}}{{\cos x}} $ and $ \sec x = \dfrac{1}{{\cos x}} $ . So, we get,
\[ = \dfrac{{\cos \theta }}{{1 - \left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)}} + \dfrac{{\sin \theta }}{{1 - \left( {\dfrac{{\cos \theta }}{{\sin \theta }}} \right)}}\]
Taking LCM of fractions, we get,
\[ = \dfrac{{\cos \theta }}{{\left( {\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}} \right)}} + \dfrac{{\sin \theta }}{{\left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}} \right)}}\]
\[ = \dfrac{{{{\cos }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}} + \dfrac{{{{\sin }^2}\theta }}{{\left( {\sin \theta - \cos \theta } \right)}}\]
Taking negative sign common from the last term, we get,
\[ = \dfrac{{{{\cos }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}} - \dfrac{{{{\sin }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}}\]
\[ = \dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}}\]
Factorizing the numerator using algebraic identity $ \left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) $ ,
\[ = \dfrac{{\left( {\cos \theta + \sin \theta } \right)\left( {\cos \theta - \sin \theta } \right)}}{{\left( {\cos \theta - \sin \theta } \right)}}\]
\[ = \left( {\cos \theta + \sin \theta } \right)\]
Multiplying the numerator and denominator by $ \sqrt 2 $ ,
\[ = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta } \right)\]
We know that $ \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} $ and $ \cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} $ .
\[ = \sqrt 2 \left( {\sin \left( {{{45}^ \circ }} \right)\cos \theta + \cos \left( {{{45}^ \circ }} \right)\sin \theta } \right)\]
Using sine compound angle formula, we get,
\[ = \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right) = R.H.S.\]
As the left side of the equation is equal to the right side of the equation, we have,
\[\dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }} = \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right)\]
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.
Complete step by step solution:
In the given problem, we have to prove a trigonometric identity that can be further used in many questions and problems as a direct result and has wide ranging applications. For proving the desired result, we need to first know the definitions of all the six trigonometric ratios.
Now, we need to make the left and right sides of the equation equal.
L.H.S. \[ = \dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }}\]
As we know that $ \tan x = \dfrac{{\sin x}}{{\cos x}} $ and $ \sec x = \dfrac{1}{{\cos x}} $ . So, we get,
\[ = \dfrac{{\cos \theta }}{{1 - \left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)}} + \dfrac{{\sin \theta }}{{1 - \left( {\dfrac{{\cos \theta }}{{\sin \theta }}} \right)}}\]
Taking LCM of fractions, we get,
\[ = \dfrac{{\cos \theta }}{{\left( {\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}} \right)}} + \dfrac{{\sin \theta }}{{\left( {\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}} \right)}}\]
\[ = \dfrac{{{{\cos }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}} + \dfrac{{{{\sin }^2}\theta }}{{\left( {\sin \theta - \cos \theta } \right)}}\]
Taking negative sign common from the last term, we get,
\[ = \dfrac{{{{\cos }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}} - \dfrac{{{{\sin }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}}\]
\[ = \dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\left( {\cos \theta - \sin \theta } \right)}}\]
Factorizing the numerator using algebraic identity $ \left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) $ ,
\[ = \dfrac{{\left( {\cos \theta + \sin \theta } \right)\left( {\cos \theta - \sin \theta } \right)}}{{\left( {\cos \theta - \sin \theta } \right)}}\]
\[ = \left( {\cos \theta + \sin \theta } \right)\]
Multiplying the numerator and denominator by $ \sqrt 2 $ ,
\[ = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta } \right)\]
We know that $ \sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }} $ and $ \cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }} $ .
\[ = \sqrt 2 \left( {\sin \left( {{{45}^ \circ }} \right)\cos \theta + \cos \left( {{{45}^ \circ }} \right)\sin \theta } \right)\]
Using sine compound angle formula, we get,
\[ = \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right) = R.H.S.\]
As the left side of the equation is equal to the right side of the equation, we have,
\[\dfrac{{\cos \theta }}{{1 - \tan \theta }} + \dfrac{{\sin \theta }}{{1 - \cot \theta }} = \sqrt 2 \sin \left( {{{45}^ \circ } + \theta } \right)\]
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Why is 1 molar aqueous solution more concentrated than class 11 chemistry CBSE

SiO2GeO2 SnOand PbOare respectively A acidic amphoteric class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

