
Prove $ \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} = {\cot ^2}x $
Answer
568.8k+ views
Hint: To solve this question first thing we should know that $ \cos \left( {\pi + x} \right) = - \cos x $ ,
$ \cos \left( { - x} \right) = \cos x $ , $ \sin \left( {\pi - x} \right) = \sin x $ , $ \cos \left( {\dfrac{\pi }{2} + x} \right) = - \sin x $ , after this we proceed accordingly.
Complete step-by-step answer:
Given, $ \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} = {\cot ^2}x $ .
Now, consider the L.H.S of the equation.
$ \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} $
We can observe there is a lot of trigonometric identity which leads to other results, as,
$ \Rightarrow \cos \left( {\pi + x} \right) = - \cos x $
$ \Rightarrow \cos \left( { - x} \right) = \cos x $
$ \Rightarrow \sin \left( {\pi - x} \right) = \sin x $
$ \Rightarrow \cos \left( {\dfrac{\pi }{2} + x} \right) = - \sin x $
Now, if we substitute $ - \cos x $ for $ \cos \left( {\pi + x} \right) $ , $ \cos x $ for $ \cos \left( { - x} \right) $ , $ \sin x $ for $ \sin \left( {\pi - x} \right) $ and $ - \sin x $ for $ \cos \left( {\dfrac{\pi }{2} + x} \right) $ in the expression $ \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} $ .
$
\Rightarrow \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} = \dfrac{{ - \cos x\left( {\cos x} \right)}}{{\sin x\left( { - \sin x} \right)}} \\
= \dfrac{{ - {{\cos }^2}x}}{{ - {{\sin }^2}x}} \\
= {\cot ^2}x \;
$
So, we can conclude that on simplification of the expression
$ \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} $ we get the result equal to $ {\cot ^2}x $ .
Hence, proved
$ \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} = {\cot ^2}x $ .
Note: Trigonometric identities are equalities in mathematics that include trigonometric functions that are valid for each value of the variables occurring where both sides of the equality are defined. There are identities, geometrically, containing the functions of one or more angles.The main description of trigonometry functions is the angles of sine, cosine, and tangent. And from the main functions can be derived the three functions that are cotangent, secant, and cosecant. Basically, in contrast to the main trigonometric functions, the other three functions are also used.
The cos and sec functions are even functions; the rest other functions are odd functions.
$ \cos \left( { - x} \right) = \cos x $ , $ \sin \left( {\pi - x} \right) = \sin x $ , $ \cos \left( {\dfrac{\pi }{2} + x} \right) = - \sin x $ , after this we proceed accordingly.
Complete step-by-step answer:
Given, $ \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} = {\cot ^2}x $ .
Now, consider the L.H.S of the equation.
$ \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} $
We can observe there is a lot of trigonometric identity which leads to other results, as,
$ \Rightarrow \cos \left( {\pi + x} \right) = - \cos x $
$ \Rightarrow \cos \left( { - x} \right) = \cos x $
$ \Rightarrow \sin \left( {\pi - x} \right) = \sin x $
$ \Rightarrow \cos \left( {\dfrac{\pi }{2} + x} \right) = - \sin x $
Now, if we substitute $ - \cos x $ for $ \cos \left( {\pi + x} \right) $ , $ \cos x $ for $ \cos \left( { - x} \right) $ , $ \sin x $ for $ \sin \left( {\pi - x} \right) $ and $ - \sin x $ for $ \cos \left( {\dfrac{\pi }{2} + x} \right) $ in the expression $ \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} $ .
$
\Rightarrow \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} = \dfrac{{ - \cos x\left( {\cos x} \right)}}{{\sin x\left( { - \sin x} \right)}} \\
= \dfrac{{ - {{\cos }^2}x}}{{ - {{\sin }^2}x}} \\
= {\cot ^2}x \;
$
So, we can conclude that on simplification of the expression
$ \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} $ we get the result equal to $ {\cot ^2}x $ .
Hence, proved
$ \dfrac{{\cos \left( {\pi + x} \right)\cos \left( { - x} \right)}}{{\sin \left( {\pi - x} \right)\cos \left( {\dfrac{\pi }{2} + x} \right)}} = {\cot ^2}x $ .
Note: Trigonometric identities are equalities in mathematics that include trigonometric functions that are valid for each value of the variables occurring where both sides of the equality are defined. There are identities, geometrically, containing the functions of one or more angles.The main description of trigonometry functions is the angles of sine, cosine, and tangent. And from the main functions can be derived the three functions that are cotangent, secant, and cosecant. Basically, in contrast to the main trigonometric functions, the other three functions are also used.
The cos and sec functions are even functions; the rest other functions are odd functions.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

