Answer
Verified
428.4k+ views
Hint: In this we use multiple theorem where $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ and for simplifying we will use the value of $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Complete step-by-step answer:
Given $\cos {48^ \circ } \cdot \cos {12^ \circ }$
We know that $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ substituting $A = {48^ \circ },B = {12^ \circ }$in formula we get
$2\cos {48^ \circ } \cdot \cos {12^ \circ } = \cos \left( {48 + 12} \right) + \cos \left( {48 - 12} \right)$
So, $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\cos {{60}^ \circ } + \cos {{36}^ \circ }}}{2}$
Substituting $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$ ,we get,
$ \Rightarrow \dfrac{{\dfrac{1}{2} + \dfrac{{\sqrt 5 + 1}}{4}}}{2}$
On simplifying we get
$\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\sqrt 5 + 3}}{8}$
So, we can say that the given statement is false
Answer is option (B)
Note: some important multiple theorem
$
2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) \\
2\sin A\sin B = cos\left( {A - B} \right) - \cos \left( {A + B} \right) \\
2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right) \\
2\sin B\cos A = \sin \left( {A + B} \right) - \sin \left( {A - B} \right) \\
$
and must not confused in value of $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Complete step-by-step answer:
Given $\cos {48^ \circ } \cdot \cos {12^ \circ }$
We know that $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ substituting $A = {48^ \circ },B = {12^ \circ }$in formula we get
$2\cos {48^ \circ } \cdot \cos {12^ \circ } = \cos \left( {48 + 12} \right) + \cos \left( {48 - 12} \right)$
So, $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\cos {{60}^ \circ } + \cos {{36}^ \circ }}}{2}$
Substituting $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$ ,we get,
$ \Rightarrow \dfrac{{\dfrac{1}{2} + \dfrac{{\sqrt 5 + 1}}{4}}}{2}$
On simplifying we get
$\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\sqrt 5 + 3}}{8}$
So, we can say that the given statement is false
Answer is option (B)
Note: some important multiple theorem
$
2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) \\
2\sin A\sin B = cos\left( {A - B} \right) - \cos \left( {A + B} \right) \\
2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right) \\
2\sin B\cos A = \sin \left( {A + B} \right) - \sin \left( {A - B} \right) \\
$
and must not confused in value of $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE