
Prove $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{3 - \sqrt 5 }}{8}$ is true or false
A.True
B.False
Answer
564.3k+ views
Hint: In this we use multiple theorem where $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ and for simplifying we will use the value of $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Complete step-by-step answer:
Given $\cos {48^ \circ } \cdot \cos {12^ \circ }$
We know that $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ substituting $A = {48^ \circ },B = {12^ \circ }$in formula we get
$2\cos {48^ \circ } \cdot \cos {12^ \circ } = \cos \left( {48 + 12} \right) + \cos \left( {48 - 12} \right)$
So, $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\cos {{60}^ \circ } + \cos {{36}^ \circ }}}{2}$
Substituting $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$ ,we get,
$ \Rightarrow \dfrac{{\dfrac{1}{2} + \dfrac{{\sqrt 5 + 1}}{4}}}{2}$
On simplifying we get
$\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\sqrt 5 + 3}}{8}$
So, we can say that the given statement is false
Answer is option (B)
Note: some important multiple theorem
$
2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) \\
2\sin A\sin B = cos\left( {A - B} \right) - \cos \left( {A + B} \right) \\
2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right) \\
2\sin B\cos A = \sin \left( {A + B} \right) - \sin \left( {A - B} \right) \\
$
and must not confused in value of $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Complete step-by-step answer:
Given $\cos {48^ \circ } \cdot \cos {12^ \circ }$
We know that $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ substituting $A = {48^ \circ },B = {12^ \circ }$in formula we get
$2\cos {48^ \circ } \cdot \cos {12^ \circ } = \cos \left( {48 + 12} \right) + \cos \left( {48 - 12} \right)$
So, $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\cos {{60}^ \circ } + \cos {{36}^ \circ }}}{2}$
Substituting $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$ ,we get,
$ \Rightarrow \dfrac{{\dfrac{1}{2} + \dfrac{{\sqrt 5 + 1}}{4}}}{2}$
On simplifying we get
$\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\sqrt 5 + 3}}{8}$
So, we can say that the given statement is false
Answer is option (B)
Note: some important multiple theorem
$
2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) \\
2\sin A\sin B = cos\left( {A - B} \right) - \cos \left( {A + B} \right) \\
2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right) \\
2\sin B\cos A = \sin \left( {A + B} \right) - \sin \left( {A - B} \right) \\
$
and must not confused in value of $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

