
Prove $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{3 - \sqrt 5 }}{8}$ is true or false
A.True
B.False
Answer
583.2k+ views
Hint: In this we use multiple theorem where $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ and for simplifying we will use the value of $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Complete step-by-step answer:
Given $\cos {48^ \circ } \cdot \cos {12^ \circ }$
We know that $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ substituting $A = {48^ \circ },B = {12^ \circ }$in formula we get
$2\cos {48^ \circ } \cdot \cos {12^ \circ } = \cos \left( {48 + 12} \right) + \cos \left( {48 - 12} \right)$
So, $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\cos {{60}^ \circ } + \cos {{36}^ \circ }}}{2}$
Substituting $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$ ,we get,
$ \Rightarrow \dfrac{{\dfrac{1}{2} + \dfrac{{\sqrt 5 + 1}}{4}}}{2}$
On simplifying we get
$\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\sqrt 5 + 3}}{8}$
So, we can say that the given statement is false
Answer is option (B)
Note: some important multiple theorem
$
2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) \\
2\sin A\sin B = cos\left( {A - B} \right) - \cos \left( {A + B} \right) \\
2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right) \\
2\sin B\cos A = \sin \left( {A + B} \right) - \sin \left( {A - B} \right) \\
$
and must not confused in value of $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Complete step-by-step answer:
Given $\cos {48^ \circ } \cdot \cos {12^ \circ }$
We know that $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ substituting $A = {48^ \circ },B = {12^ \circ }$in formula we get
$2\cos {48^ \circ } \cdot \cos {12^ \circ } = \cos \left( {48 + 12} \right) + \cos \left( {48 - 12} \right)$
So, $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\cos {{60}^ \circ } + \cos {{36}^ \circ }}}{2}$
Substituting $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$ ,we get,
$ \Rightarrow \dfrac{{\dfrac{1}{2} + \dfrac{{\sqrt 5 + 1}}{4}}}{2}$
On simplifying we get
$\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\sqrt 5 + 3}}{8}$
So, we can say that the given statement is false
Answer is option (B)
Note: some important multiple theorem
$
2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) \\
2\sin A\sin B = cos\left( {A - B} \right) - \cos \left( {A + B} \right) \\
2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right) \\
2\sin B\cos A = \sin \left( {A + B} \right) - \sin \left( {A - B} \right) \\
$
and must not confused in value of $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

