
Prove $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{3 - \sqrt 5 }}{8}$ is true or false
A.True
B.False
Answer
558.3k+ views
Hint: In this we use multiple theorem where $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ and for simplifying we will use the value of $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Complete step-by-step answer:
Given $\cos {48^ \circ } \cdot \cos {12^ \circ }$
We know that $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ substituting $A = {48^ \circ },B = {12^ \circ }$in formula we get
$2\cos {48^ \circ } \cdot \cos {12^ \circ } = \cos \left( {48 + 12} \right) + \cos \left( {48 - 12} \right)$
So, $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\cos {{60}^ \circ } + \cos {{36}^ \circ }}}{2}$
Substituting $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$ ,we get,
$ \Rightarrow \dfrac{{\dfrac{1}{2} + \dfrac{{\sqrt 5 + 1}}{4}}}{2}$
On simplifying we get
$\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\sqrt 5 + 3}}{8}$
So, we can say that the given statement is false
Answer is option (B)
Note: some important multiple theorem
$
2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) \\
2\sin A\sin B = cos\left( {A - B} \right) - \cos \left( {A + B} \right) \\
2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right) \\
2\sin B\cos A = \sin \left( {A + B} \right) - \sin \left( {A - B} \right) \\
$
and must not confused in value of $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Complete step-by-step answer:
Given $\cos {48^ \circ } \cdot \cos {12^ \circ }$
We know that $2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B)$ substituting $A = {48^ \circ },B = {12^ \circ }$in formula we get
$2\cos {48^ \circ } \cdot \cos {12^ \circ } = \cos \left( {48 + 12} \right) + \cos \left( {48 - 12} \right)$
So, $\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\cos {{60}^ \circ } + \cos {{36}^ \circ }}}{2}$
Substituting $\cos {60^ \circ } = \dfrac{1}{2}$and $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$ ,we get,
$ \Rightarrow \dfrac{{\dfrac{1}{2} + \dfrac{{\sqrt 5 + 1}}{4}}}{2}$
On simplifying we get
$\cos {48^ \circ } \cdot \cos {12^ \circ } = \dfrac{{\sqrt 5 + 3}}{8}$
So, we can say that the given statement is false
Answer is option (B)
Note: some important multiple theorem
$
2\cos A\cos B = \cos \left( {A + B} \right) + \cos (A - B) \\
2\sin A\sin B = cos\left( {A - B} \right) - \cos \left( {A + B} \right) \\
2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right) \\
2\sin B\cos A = \sin \left( {A + B} \right) - \sin \left( {A - B} \right) \\
$
and must not confused in value of $\cos {36^ \circ } = \dfrac{{\sqrt 5 + 1}}{4}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

