
Prime factorization of \[25115\] has \[45\].
Answer
498.6k+ views
Hint: In order to check if \[25115\] has \[45\], firstly we must note down the prime factors of \[25115\]. After listing them, we must be checking for \[45\]. If the list possesses \[45\] as one of its factors then we can say that \[25115\] has \[45\].
Complete step-by-step solution:
Let us have brief information regarding prime factorization. Prime factorization is performed upon composite numbers to find the prime factors of the certain composite number. There are two common methods of performing prime factorization. They are the factor tree method and upside down division. The use of this method is to break down the number into primes in order to express them as a product of primes. If there occurs a single prime factor of a number multiple number of times, then can be expressed in exponential form.
Now let us perform the method of prime factorization on \[25115\] and check for \[45\].
We get,
\[\text{5}\left| \!{\underline {\,
\text{25115} \,}} \right. \]
\[\left| \!{\underline {\,
\text{5023} \,}} \right. \]
So we obtain \[25115=5\times 5023\]
The prime factor of \[25115\] is \[5,5023\].
We can observe that there is no \[45\] in the list of prime factors of \[25115\].
\[\therefore \] Prime factorization of \[25115\] does not has \[45\]
Hence, the given statement is false.
Note: While solving this, we must have a note that \[45\] can only be a factor because it is not a prime number. We must remember that \[45\] will never be a prime factor to any number. We can perform prime factorization on a prime number but we must be acknowledging that the prime factor of the prime number will be the number itself.
Complete step-by-step solution:
Let us have brief information regarding prime factorization. Prime factorization is performed upon composite numbers to find the prime factors of the certain composite number. There are two common methods of performing prime factorization. They are the factor tree method and upside down division. The use of this method is to break down the number into primes in order to express them as a product of primes. If there occurs a single prime factor of a number multiple number of times, then can be expressed in exponential form.
Now let us perform the method of prime factorization on \[25115\] and check for \[45\].
We get,
\[\text{5}\left| \!{\underline {\,
\text{25115} \,}} \right. \]
\[\left| \!{\underline {\,
\text{5023} \,}} \right. \]
So we obtain \[25115=5\times 5023\]
The prime factor of \[25115\] is \[5,5023\].
We can observe that there is no \[45\] in the list of prime factors of \[25115\].
\[\therefore \] Prime factorization of \[25115\] does not has \[45\]
Hence, the given statement is false.
Note: While solving this, we must have a note that \[45\] can only be a factor because it is not a prime number. We must remember that \[45\] will never be a prime factor to any number. We can perform prime factorization on a prime number but we must be acknowledging that the prime factor of the prime number will be the number itself.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples for herbs , shrubs , climbers , creepers

Four bells toll together at 900am They toll after 7811 class 6 maths CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Which animal has three hearts class 11 biology CBSE


