
$\text{p}{{\text{K}}_{\text{a}}}$ of $\text{NH}_{\text{4}}^{\text{+}}$ is $9.26$, Hence, effective range of $\text{N}{{\text{H}}_{\text{4}}}\text{OH}\,\,\text{-}\,\,\text{N}{{\text{H}}_{\text{4}}}\text{Cl}$ buffer is about $\text{pH}$:
(A) $\text{8}\text{.26}\,\,\text{to}\,\,\text{10}\text{.26}$
(B) $\text{4}\text{.74}\,\,\text{to}\,\,\text{5}\text{.74}$
(C) $\text{3}\text{.74}\,\,\text{to}\,\,\text{5}\text{.74}$
(D) $\text{8}\text{.26}\,\,\text{to}\,\,\text{9}\text{.26}$
Answer
566.1k+ views
Hint: A solution which resists the change in$\text{pH}$ and $\text{pH}$ does not change significantly in addition to a small amount of strong acid and strong base is called a buffer solution. Mixed buffer solution is two types; acidic buffer solution and basic buffer solution.
- Change in $\text{pH}$ of a solution due to the change in concentration of present free ${{\text{H}}^{\text{+}}}$ and $\text{O}{{\text{H}}^{\text{-}}}$ ions.
Complete Solution :
$\text{N}{{\text{H}}_{\text{4}}}\text{OH}\,\,\text{-}\,\,\text{N}{{\text{H}}_{\text{4}}}\text{Cl}$ Solution is basic buffer solution (the solution in which weak base and its conjugate acid are present).
An aqueous solution of mixture of weak base and salt of same weak base with any strong acid solution is called basic buffer solution.
\[\begin{align}
& \text{N}{{\text{H}}_{\text{4}}}\text{OH}\,\text{+}\,\text{N}{{\text{H}}_{\text{4}}}\text{Cl} \\
& \text{N}{{\text{H}}_{\text{4}}}\text{OH}\,\,\rightleftharpoons \,\,\text{NH}_{\text{4}}^{\text{+}}\,\,\text{+}\,\,\text{O}{{\text{H}}^{\text{-}}} \\
& \text{N}{{\text{H}}_{\text{4}}}\text{Cl}\,\,\rightleftharpoons \,\,\text{NH}_{\text{4}}^{\text{+}}\,\,\text{+}\,\,\text{C}{{\text{l}}^{\text{-}}} \\
\end{align}\]
$\text{pH}$ of a buffer solution is calculated by Henderson’s equation –
$\text{pH}\,\,\text{=}\,\,\text{p}{{\text{K}}_{\text{a}}}\,\text{+}\,\text{log}\dfrac{\text{ }\!\![\!\!\text{ salt }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ acid }\!\!]\!\!\text{ }}\,\,\text{or}\,\,\dfrac{\text{ }\!\![\!\!\text{ conjugate }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ acid }\!\!]\!\!\text{ }}$
$\text{pH}$ Range of basic buffer solution: it depends on the $\text{p}{{\text{K}}_{\text{a}}}$ value of base and ratio of its salt to base concentrations.
\[\begin{align}
& \,\,\text{ }\!\![\!\!\text{ N}{{\text{H}}_{\text{4}}}\text{OH }\!\!]\!\!\text{ }\,\,\,\text{:}\,\,\,\,\text{ }\!\![\!\!\text{ N}{{\text{H}}_{\text{4}}}\text{Cl }\!\!]\!\!\text{ } \\
& \,\,\,\,\begin{matrix}
\text{(i) if} & 1 & 10 \\
\end{matrix} \\
& \,\,\,\text{(ii})\,\,\,\,\begin{matrix}
\text{if} & 10 & 1 \\
\end{matrix} \\
& \text{so,}\,\,\text{pH}\,\,\text{range}\,\,\text{is}\,\, \\
& \,\,\,\,\,\,\,\,\,\,\,\,\text{pH}\,\,\text{=}\,\,\text{p}{{\text{K}}_{\text{a}}}\,\text{ }\!\!\pm\!\!\text{ }\,\,\text{1} \\
\end{align}\]
So, $\text{pH}$ range of the buffer solution
$\begin{align}
& \text{pH}\,\,\text{=}\,\,\,\text{p}{{\text{K}}_{\text{a}}}\,\text{ }\!\!\pm\!\!\text{ }\,\text{1} \\
& \text{pH=}\,\,\,\,\text{9}\text{.26}\,\text{ }\!\!\pm\!\!\text{ }\,\text{1} \\
& \text{pH}\,\,\text{range}\,\,\text{will}\,\text{be}\,\,\text{8}\text{.26}\,\,\text{to}\,\,\text{10}\text{.26} \\
\end{align}$
So, the correct answer is “Option A”.
Additional information-
Buffer action in basic solution –
If a small amount of acid is added to the buffer solution, the \[{{\text{H}}^{\text{+}}}\] ions are consumed by \[\text{N}{{\text{H}}_{\text{4}}}\text{OH}\,\] so there is no appreciable change in$\text{pH}$of the buffer solution and whenever a small amount of base is added in the buffer solution, the $\text{O}{{\text{H}}^{\text{-}}}$ ion react with the $\text{NH}_{\text{4}}^{\text{+}}$ ion to produce \[\text{N}{{\text{H}}_{\text{4}}}\text{OH}\,\]molecule. $\text{O}{{\text{H}}^{\text{-}}}$
Note: To calculate the $\text{pOH}$ rang of basic buffer solution we will use the same Henderson’s equation, but instate of $\,\,\text{p}{{\text{K}}_{a}}\,$ value we will use $\,\,\text{p}{{\text{K}}_{b}}\, $ value of the solution $\text{pOH}\,\,\text{=}\,\,\text{p}{{\text{K}}_{\text{b}}}\,\text{+}\,\text{log}\dfrac{\text{ }\!\![\!\!\text{ salt }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ acid }\!\!]\!\!\text{ }}\,\,\text{or}\,\,\dfrac{\text{ }\!\![\!\!\text{ conjugate }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ acid }\!\!]\!\!\text{ }}$
So, the $\text{pOH}$ range will be $\text{pOH}\,\,\text{=}\,\,\text{p}{{\text{K}}_{\text{b}}}\,\text{ }\!\!\pm\!\!\text{ }\,\text{1}$
- Change in $\text{pH}$ of a solution due to the change in concentration of present free ${{\text{H}}^{\text{+}}}$ and $\text{O}{{\text{H}}^{\text{-}}}$ ions.
Complete Solution :
$\text{N}{{\text{H}}_{\text{4}}}\text{OH}\,\,\text{-}\,\,\text{N}{{\text{H}}_{\text{4}}}\text{Cl}$ Solution is basic buffer solution (the solution in which weak base and its conjugate acid are present).
An aqueous solution of mixture of weak base and salt of same weak base with any strong acid solution is called basic buffer solution.
\[\begin{align}
& \text{N}{{\text{H}}_{\text{4}}}\text{OH}\,\text{+}\,\text{N}{{\text{H}}_{\text{4}}}\text{Cl} \\
& \text{N}{{\text{H}}_{\text{4}}}\text{OH}\,\,\rightleftharpoons \,\,\text{NH}_{\text{4}}^{\text{+}}\,\,\text{+}\,\,\text{O}{{\text{H}}^{\text{-}}} \\
& \text{N}{{\text{H}}_{\text{4}}}\text{Cl}\,\,\rightleftharpoons \,\,\text{NH}_{\text{4}}^{\text{+}}\,\,\text{+}\,\,\text{C}{{\text{l}}^{\text{-}}} \\
\end{align}\]
$\text{pH}$ of a buffer solution is calculated by Henderson’s equation –
$\text{pH}\,\,\text{=}\,\,\text{p}{{\text{K}}_{\text{a}}}\,\text{+}\,\text{log}\dfrac{\text{ }\!\![\!\!\text{ salt }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ acid }\!\!]\!\!\text{ }}\,\,\text{or}\,\,\dfrac{\text{ }\!\![\!\!\text{ conjugate }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ acid }\!\!]\!\!\text{ }}$
$\text{pH}$ Range of basic buffer solution: it depends on the $\text{p}{{\text{K}}_{\text{a}}}$ value of base and ratio of its salt to base concentrations.
\[\begin{align}
& \,\,\text{ }\!\![\!\!\text{ N}{{\text{H}}_{\text{4}}}\text{OH }\!\!]\!\!\text{ }\,\,\,\text{:}\,\,\,\,\text{ }\!\![\!\!\text{ N}{{\text{H}}_{\text{4}}}\text{Cl }\!\!]\!\!\text{ } \\
& \,\,\,\,\begin{matrix}
\text{(i) if} & 1 & 10 \\
\end{matrix} \\
& \,\,\,\text{(ii})\,\,\,\,\begin{matrix}
\text{if} & 10 & 1 \\
\end{matrix} \\
& \text{so,}\,\,\text{pH}\,\,\text{range}\,\,\text{is}\,\, \\
& \,\,\,\,\,\,\,\,\,\,\,\,\text{pH}\,\,\text{=}\,\,\text{p}{{\text{K}}_{\text{a}}}\,\text{ }\!\!\pm\!\!\text{ }\,\,\text{1} \\
\end{align}\]
So, $\text{pH}$ range of the buffer solution
$\begin{align}
& \text{pH}\,\,\text{=}\,\,\,\text{p}{{\text{K}}_{\text{a}}}\,\text{ }\!\!\pm\!\!\text{ }\,\text{1} \\
& \text{pH=}\,\,\,\,\text{9}\text{.26}\,\text{ }\!\!\pm\!\!\text{ }\,\text{1} \\
& \text{pH}\,\,\text{range}\,\,\text{will}\,\text{be}\,\,\text{8}\text{.26}\,\,\text{to}\,\,\text{10}\text{.26} \\
\end{align}$
So, the correct answer is “Option A”.
Additional information-
Buffer action in basic solution –
If a small amount of acid is added to the buffer solution, the \[{{\text{H}}^{\text{+}}}\] ions are consumed by \[\text{N}{{\text{H}}_{\text{4}}}\text{OH}\,\] so there is no appreciable change in$\text{pH}$of the buffer solution and whenever a small amount of base is added in the buffer solution, the $\text{O}{{\text{H}}^{\text{-}}}$ ion react with the $\text{NH}_{\text{4}}^{\text{+}}$ ion to produce \[\text{N}{{\text{H}}_{\text{4}}}\text{OH}\,\]molecule. $\text{O}{{\text{H}}^{\text{-}}}$
Note: To calculate the $\text{pOH}$ rang of basic buffer solution we will use the same Henderson’s equation, but instate of $\,\,\text{p}{{\text{K}}_{a}}\,$ value we will use $\,\,\text{p}{{\text{K}}_{b}}\, $ value of the solution $\text{pOH}\,\,\text{=}\,\,\text{p}{{\text{K}}_{\text{b}}}\,\text{+}\,\text{log}\dfrac{\text{ }\!\![\!\!\text{ salt }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ acid }\!\!]\!\!\text{ }}\,\,\text{or}\,\,\dfrac{\text{ }\!\![\!\!\text{ conjugate }\!\!]\!\!\text{ }}{\text{ }\!\![\!\!\text{ acid }\!\!]\!\!\text{ }}$
So, the $\text{pOH}$ range will be $\text{pOH}\,\,\text{=}\,\,\text{p}{{\text{K}}_{\text{b}}}\,\text{ }\!\!\pm\!\!\text{ }\,\text{1}$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

