     Question Answers

# Pick out the greatest fraction $8\dfrac{1}{4},2\dfrac{9}{{13}},4\dfrac{1}{2},1\dfrac{3}{6}.$  Hint: The value of mixed fraction $a\dfrac{b}{c} = \dfrac{{(a \times c) + b}}{c}$

The given mixed fractions are $8\dfrac{1}{4},2\dfrac{9}{{13}},4\dfrac{1}{2},1\dfrac{3}{6}.$
Converting these mixed fraction into fractions

$8\dfrac{1}{4} = \dfrac{{\left( {8 \times 4} \right) + 1}}{4} = \dfrac{{33}}{4}$

$2\dfrac{9}{{13}} = \dfrac{{\left( {13 \times 2} \right) + 9}}{{13}} = \dfrac{{35}}{{13}}$

$4\dfrac{1}{2} = \dfrac{{\left( {2 \times 4} \right) + 1}}{2} = \dfrac{9}{2}$

$1\dfrac{3}{6} = \dfrac{{\left( {6 \times 1} \right) + 3}}{6} = \dfrac{9}{6} = \dfrac{3}{2}$

The values of these fractions are

$\dfrac{{33}}{4} = 8.25,\;\dfrac{{35}}{{13}} \approx 2.69,\;\dfrac{9}{2} = 4.5,\;\dfrac{3}{2} = 1.5$

If we compare the values, we get $\dfrac{3}{2} < \dfrac{{35}}{{13}} < \dfrac{9}{2} < \dfrac{{33}}{4}$

$\Rightarrow \dfrac{{33}}{4}$ is the greatest of the four fractions.

Corresponding mixed fraction for $\dfrac{{33}}{4} = 8\dfrac{1}{4}.$

$\therefore$ The greatest fraction of the four fractions is $8\dfrac{1}{4}.$

Note: We have to find the greatest mixed fraction of the given mixed fractions. We need to know the values of these mixed fractions to find the greatest fraction. So we converted mixed fractions to rational numbers to find their values easily.
View Notes
Improper Fraction  Mixed Fractions  Greatest Integer Function  Greatest Common Divisor  Fraction and Decimals  Decimal Fraction  Fraction Numerator  Unit Fraction  Fraction Rules  ICSE Full Form  