
Why is phenyl carbocation unstable?
Answer
480k+ views
Hint: To solve this question we should know about:
A chemical that is stable is unreactive, while an unstable chemical is reactive. The Unequal Distribution of Electrons (UDED) in a chemical species determines reactivity (molecule, atom, and ion). This is how "unreactive" chemical species behave. Like the compressed atmosphere in a sealed cylinder, their electrons are securely confined by their nuclei. To make it explode, you'll probably need a big fire (a lot of energy) in the room (react)
Complete answer:
The creation of a phenyl cation might be thought of as
${C_6}{H_5} - H \to {C_6}{H_5} + H + {e^ - }$
The benzene $C - H$ bonds are $s{p^2}$ hybridized.
Because the electrons are closer to the nucleus with a high s character, we must use more energy to remove them and break the bond.
Ethane, for example, requires \[423KJmo{l^{ - 1}}\] to break the C-H bond, but benzene requires \[470KJmo{l^{ - 1}}\] .
Furthermore, the unoccupied $s{p^2}$ orbital is in the ring's plane.
Because it can't overlap with the system's $\pi $ orbitals, it can't be stabilized via resonance.
The phenyl cation is an unstable, high-energy species.
Because of the high bond energy of the aromatic $C - H$ bond, the phenyl carbocation is unstable.
Note:
Because the phenyl cation core has two ligands but no lone pairs, $sp$ is the most stable hybridization. Of course, it's not genuinely $sp$ because it can't take on a linear geometry, but it's also not $s{p^2}$ because the bond angle is greater than 120°.
A chemical that is stable is unreactive, while an unstable chemical is reactive. The Unequal Distribution of Electrons (UDED) in a chemical species determines reactivity (molecule, atom, and ion). This is how "unreactive" chemical species behave. Like the compressed atmosphere in a sealed cylinder, their electrons are securely confined by their nuclei. To make it explode, you'll probably need a big fire (a lot of energy) in the room (react)
Complete answer:
The creation of a phenyl cation might be thought of as
${C_6}{H_5} - H \to {C_6}{H_5} + H + {e^ - }$
The benzene $C - H$ bonds are $s{p^2}$ hybridized.
Because the electrons are closer to the nucleus with a high s character, we must use more energy to remove them and break the bond.
Ethane, for example, requires \[423KJmo{l^{ - 1}}\] to break the C-H bond, but benzene requires \[470KJmo{l^{ - 1}}\] .
Furthermore, the unoccupied $s{p^2}$ orbital is in the ring's plane.
Because it can't overlap with the system's $\pi $ orbitals, it can't be stabilized via resonance.
The phenyl cation is an unstable, high-energy species.
Because of the high bond energy of the aromatic $C - H$ bond, the phenyl carbocation is unstable.
Note:
Because the phenyl cation core has two ligands but no lone pairs, $sp$ is the most stable hybridization. Of course, it's not genuinely $sp$ because it can't take on a linear geometry, but it's also not $s{p^2}$ because the bond angle is greater than 120°.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

What is Environment class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE

