
One mole of a monatomic ideal gas undergoes an adiabatic expansion in which its volume becomes eight times its initial value. If the initial temperature of the gas is 100K and the universal gas constant R = 8.0 \[Jmo{{l}^{-1}}{{K}^{-1}}\], the decrease in its internal energy, in Joule, is
Answer
565.8k+ views
Hint: We are given with ideal gas, so, we can use the ideal gas equation here. The moles are given to be one mole, the volume changes and becomes eight-time of its initial value. The initial temperature is given. We need to find a decrease in internal energy given this to be an adiabatic expansion.
Complete step by step answer:
Moles, n= 1
The initial volume, \[{{V}_{i}}\]= V
The final volume, \[{{V}_{f}}\]= 8V
Temperature, T= 100 K
Gas constant, R = 8.0 \[Jmo{{l}^{-1}}{{K}^{-1}}\]
This is an adiabatic expansion and, in such expansion, we can use the equation for it.
Using, \[{{T}_{i}}V_{i}^{\gamma -1}={{T}_{2}}V_{2}^{\gamma -1}\]
We can find out the final temperature of the gas. Since this is a monatomic gas, so, the value of \[\gamma \] is \[\dfrac{5}{3}\]
Putting the values,
\[\begin{align}
& 100\times {{V}^{\dfrac{2}{3}}}={{T}_{2}}{{(8V)}^{\dfrac{2}{3}}} \\
& {{T}_{2}}=\dfrac{100}{4}=25K \\
\end{align}\]
So the final temperature is 25 K. the change in temperature is 100-25= 75 K
Now change in internal energy can be found out using the formula \[\Delta U=n{{C}_{v}}\Delta T\]& for a monatomic ideal gas the value of \[{{C}_{v}}=\dfrac{3R}{2}\].
\[\Delta U=1\times \dfrac{3\times 8}{2}\times 75=900J\]
So, the change in internal energy comes out to be 900 J.
Note:
We have used ideal gas law here because it was mentioned in the question that the gas is ideal. Otherwise, we would have to use real gas laws. Also, we had taken the value of the gas constant to be 8, if otherwise not mentioned we would have to use the original value of 8.314.
Complete step by step answer:
Moles, n= 1
The initial volume, \[{{V}_{i}}\]= V
The final volume, \[{{V}_{f}}\]= 8V
Temperature, T= 100 K
Gas constant, R = 8.0 \[Jmo{{l}^{-1}}{{K}^{-1}}\]
This is an adiabatic expansion and, in such expansion, we can use the equation for it.
Using, \[{{T}_{i}}V_{i}^{\gamma -1}={{T}_{2}}V_{2}^{\gamma -1}\]
We can find out the final temperature of the gas. Since this is a monatomic gas, so, the value of \[\gamma \] is \[\dfrac{5}{3}\]
Putting the values,
\[\begin{align}
& 100\times {{V}^{\dfrac{2}{3}}}={{T}_{2}}{{(8V)}^{\dfrac{2}{3}}} \\
& {{T}_{2}}=\dfrac{100}{4}=25K \\
\end{align}\]
So the final temperature is 25 K. the change in temperature is 100-25= 75 K
Now change in internal energy can be found out using the formula \[\Delta U=n{{C}_{v}}\Delta T\]& for a monatomic ideal gas the value of \[{{C}_{v}}=\dfrac{3R}{2}\].
\[\Delta U=1\times \dfrac{3\times 8}{2}\times 75=900J\]
So, the change in internal energy comes out to be 900 J.
Note:
We have used ideal gas law here because it was mentioned in the question that the gas is ideal. Otherwise, we would have to use real gas laws. Also, we had taken the value of the gas constant to be 8, if otherwise not mentioned we would have to use the original value of 8.314.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

