Answer
Verified
398.1k+ views
Hint: We need to assume that the gas is ideal. Compare the first state to the second state and make the temperature of the second state subject of the formula
Formula used: In this solution we will be using the following formulae;
$ \dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}} $ where $ {P_1} $ is the pressure at the first state, $ {V_1} $ is the volume at the first state, and $ {T_1} $ is the temperature at the first state. Similarly, $ {P_2} $ is the pressure at the second state, $ {V_2} $ is the volume at the second state, and $ {T_2} $ is the temperature at that state.
Complete step by step solution:
To solve the above question, we assume that the helium gas is behaving like an ideal gas. Hence, we can use the ideal gas relation. From the ideal gas relation, we can get by comparison of the two state, the equation
$ \dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}} $ where $ {P_1} $ is the pressure at the first state, $ {V_1} $ is the volume at the first state, $ {T_1} $ is the temperature at the first state, $ {P_2} $ is the pressure at the second state, $ {V_2} $ is the volume at the second state, and $ {T_2} $ is the temperature at that state.
Hence, by inserting all given values, we have
$ \dfrac{{76\left( 1 \right)}}{{27 + 273}} = \dfrac{{\left( {2 \times 76} \right)\left( {2 \times 1} \right)}}{{{T_2}}} $ ( $ 27 + 273 $ since temperature has to be in kelvin)
Hence, $ {T_2} = \dfrac{{\left( {2 \times 76} \right)\left( {2 \times 1} \right) \times 300}}{{76}} $
Which by computation gives
$ {T_2} = 1200K $
Which by conversion to degree Celsius is
$ {T_C} = 1200 - 273 = 927^\circ C $
Hence, the correct answer is B.
Note:
Alternatively, observe that we do not need to insert the values for pressure and volume since we were told that it was doubled. We could simply write the equation as
$ \dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}} = \dfrac{{\left( {2{P_1}} \right)\left( {2{V_1}} \right)}}{{{T_2}}} $
Hence, the pressure and volume values cancel out. So we have
$ \dfrac{{1 \times 1}}{{{T_1}}} = \dfrac{{2 \times 2}}{{{T_2}}} $
$ \Rightarrow {T_2} = 4 \times {T_1} $
From which we get
$ {T_2} = 4 \times 300 = 1200K $ .
Formula used: In this solution we will be using the following formulae;
$ \dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}} $ where $ {P_1} $ is the pressure at the first state, $ {V_1} $ is the volume at the first state, and $ {T_1} $ is the temperature at the first state. Similarly, $ {P_2} $ is the pressure at the second state, $ {V_2} $ is the volume at the second state, and $ {T_2} $ is the temperature at that state.
Complete step by step solution:
To solve the above question, we assume that the helium gas is behaving like an ideal gas. Hence, we can use the ideal gas relation. From the ideal gas relation, we can get by comparison of the two state, the equation
$ \dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}} $ where $ {P_1} $ is the pressure at the first state, $ {V_1} $ is the volume at the first state, $ {T_1} $ is the temperature at the first state, $ {P_2} $ is the pressure at the second state, $ {V_2} $ is the volume at the second state, and $ {T_2} $ is the temperature at that state.
Hence, by inserting all given values, we have
$ \dfrac{{76\left( 1 \right)}}{{27 + 273}} = \dfrac{{\left( {2 \times 76} \right)\left( {2 \times 1} \right)}}{{{T_2}}} $ ( $ 27 + 273 $ since temperature has to be in kelvin)
Hence, $ {T_2} = \dfrac{{\left( {2 \times 76} \right)\left( {2 \times 1} \right) \times 300}}{{76}} $
Which by computation gives
$ {T_2} = 1200K $
Which by conversion to degree Celsius is
$ {T_C} = 1200 - 273 = 927^\circ C $
Hence, the correct answer is B.
Note:
Alternatively, observe that we do not need to insert the values for pressure and volume since we were told that it was doubled. We could simply write the equation as
$ \dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}} = \dfrac{{\left( {2{P_1}} \right)\left( {2{V_1}} \right)}}{{{T_2}}} $
Hence, the pressure and volume values cancel out. So we have
$ \dfrac{{1 \times 1}}{{{T_1}}} = \dfrac{{2 \times 2}}{{{T_2}}} $
$ \Rightarrow {T_2} = 4 \times {T_1} $
From which we get
$ {T_2} = 4 \times 300 = 1200K $ .
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE