
On increasing temperature from \[\text{200K}\] to \[\text{220K}\] rate of reaction A increases by 3 times and the rate of reaction B increases by 9 times then correct the relationship between the activation energy of A and B is:
A) \[{{\text{E}}_{\text{A}}}\text{ = 3}{{\text{E}}_{\text{B}}}\]
B) \[\text{3}{{\text{E}}_{\text{A}}}\text{ = }{{\text{E}}_{\text{B}}}\]
C) \[{{\text{E}}_{\text{B}}}\text{ = 2}{{\text{E}}_{\text{A}}}\]
D) \[{{\text{E}}_{\text{A}}}\text{ = 2}{{\text{E}}_{\text{B}}}\]
Answer
576.6k+ views
Hint: The Arrhenius equation relates the rate constant with the activation energy, absolute temperature, and the pre-exponential factor A. The rate of reaction is directly proportional to the rate constant. The relation between the rates at temperature \[\text{200K}\] and \[\text{220K}\]can be used to establish the relationship between activation energy for reaction A and B.
Complete answer:
The Arrhenius equation is used for the calculations of activation energy.
$\text{ K = A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{RT}} \right)}}$ (1)
Where
${{\text{E}}_{\text{a}}}$ Is Arrhenius activation energy
A is the pre-exponential factor
R is gas constant and T is the absolute temperature in kelvin
According to the question, We know that,
For reaction A
$\text{ }{{\text{T}}_{\text{1}}}\text{=200 K and T2 = 220K}$
Let $\text{ }{{\text{K}}_{\text{1}}}$ be the rate for A and $\text{ }{{\text{K}}_{2}}$be the rate of reaction B
The relation between the rates of reaction A and B is given as,
\[\text{3 (}{{\text{r}}_{\text{1}}}{{\text{)}}_{^{^{_{\text{A}}}}}}\text{= }{{\left( {{\text{r}}_{\text{2}}} \right)}_{\text{A}}}\]
\[\begin{align}
& \text{where,} \\
& {{\text{(}{{\text{r}}_{\text{1}}}\text{)}}_{^{^{_{\text{A}}}}}}\text{= rate of reaction A at }{{\text{T}}_{\text{1}}}\text{ K} \\
& {{\left( {{\text{r}}_{\text{2}}} \right)}_{\text{A}}}\text{= rate of reaction A at }{{\text{T}}_{\text{2}}}\text{ K } \\
\end{align}\]
Since we know that,
$\begin{align}
& \text{Rate of reaction }\propto \text{ Rate constant } \\
& \Rightarrow \text{ 3 (}{{\text{K}}_{\text{1}}}{{\text{)}}_{\text{A}}}\text{=(}{{\text{K}}_{\text{2}}}{{\text{)}}_{\text{A}}} \\
\end{align}$
Where, ${{\text{K}}_{\text{1}}}$and ${{\text{K}}_{\text{2}}}$are the rate constant at temperature ${{\text{T}}_{\text{1}}}$ and \[{{\text{T}}_{\text{2}}}\]
On further simplification we get,
$\text{ }\dfrac{{{\text{(}{{\text{K}}_{\text{1}}}\text{)}}_{\text{A}}}}{{{\text{(}{{\text{K}}_{\text{2}}}\text{)}}_{\text{A}}}}\text{ = }\dfrac{\text{1}}{\text{3}}\text{ }$ (2)
Now using (1) and (2) we get,
\[\text{ }\dfrac{{{\text{(}{{\text{K}}_{\text{1}}}\text{)}}_{\text{A}}}}{{{\text{(}{{\text{K}}_{\text{2}}}\text{)}}_{\text{A}}}}\text{=}\dfrac{1}{3}\text{ = }\dfrac{\text{A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{1}}}} \right)}}}{\text{A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{2}}}} \right)}}}\text{ }\]
\[\begin{align}
& \Rightarrow \dfrac{1}{3}\text{= }\dfrac{\text{A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{1}}}} \right)}}}{\text{A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{2}}}} \right)}}} \\
& \Rightarrow \dfrac{1}{3}\text{= }{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{1}}}} \right)}}\text{ }{{\text{e}}^{\left( \dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{2}}}} \right)}} \\
& \Rightarrow \dfrac{1}{3}\text{= }{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\left( \dfrac{1}{{{\text{T}}_{\text{2}}}}-\dfrac{1}{{{\text{T}}_{\text{1}}}} \right)}} \\
\end{align}\]
Let us substitute the value for temperature. we get
\[\begin{align}
& \Rightarrow \dfrac{1}{3}\text{= }{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\left( \dfrac{1}{220}-\dfrac{1}{200} \right)}} \\
& \Rightarrow \dfrac{1}{3}\text{= }{{\text{e}}^{\text{ }\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{ }\left( \dfrac{20}{220\text{ }\times \text{ }200} \right)}} \\
& \Rightarrow \dfrac{1}{3}\text{= }{{\text{e}}^{\text{ }\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{ }\left( \dfrac{20}{220\text{ }\times \text{ }200} \right)}} \\
\end{align}\]
Take a logarithm on both sides of the equation.
\[\begin{align}
& \Rightarrow \log \left( \dfrac{1}{3} \right)\text{= }\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{ }\left( \dfrac{20}{220\text{ }\times \text{ }200} \right) \\
& \Rightarrow \log \left( \dfrac{1}{3} \right)\text{= }\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{ }\left( \dfrac{1}{2200} \right) \\
& \text{ Rearrange equation to get the value of }{{\text{E}}_{\text{a}}}, \\
& {{\text{E}}_{\text{a}}}=2200\text{ R }\log \left( \dfrac{1}{3} \right) \\
\end{align}\]
For reaction B
$\text{ }{{\text{T}}_{\text{1}}}\text{=200 K and }{{\text{T}}_{\text{2}}}\text{ = 220K}$
Let $\text{ }{{\text{K}}_{\text{1}}}$ be the rate for A and $\text{ }{{\text{K}}_{2}}$be the rate of reaction B
The relation between the rates of reaction A and B is given as,
\[\text{9 (}{{\text{r}}_{\text{1}}}{{\text{)}}_{^{^{\text{B}}}}}\text{= }{{\left( {{\text{r}}_{\text{2}}} \right)}_{\text{B}}}\]
\[\begin{align}
& \text{where,} \\
& {{\text{(}{{\text{r}}_{\text{1}}}\text{)}}_{^{^{_{\text{B}}}}}}\text{= rate of reaction B at }{{\text{T}}_{\text{1}}}\text{ K} \\
& {{\left( {{\text{r}}_{\text{2}}} \right)}_{\text{B}}}\text{= rate of reaction B at }{{\text{T}}_{\text{2}}}\text{ K } \\
\end{align}\]
Since we know that,
\[\begin{align}
& \text{Rate of reaction }\propto \text{ Rate constant } \\
& \Rightarrow \text{ 9 (}{{\text{K}}_{\text{1}}}{{\text{)}}_{\text{B}}}\text{=(}{{\text{K}}_{\text{2}}}{{\text{)}}_{\text{B}}} \\
\end{align}\]
Where, ${{\text{K}}_{\text{1}}}$and ${{\text{K}}_{\text{2}}}$are the rate constant at temperature ${{\text{T}}_{\text{1}}}$ and \[{{\text{T}}_{\text{2}}}\]
On further simplification we get,
\[\text{ }\dfrac{{{\text{(}{{\text{K}}_{\text{1}}}\text{)}}_{\text{B}}}}{{{\text{(}{{\text{K}}_{\text{2}}}\text{)}}_{\text{B}}}}\text{ = }\dfrac{\text{1}}{9}\text{ }\] (2)
By following the similar procedure as above we get,
\[\text{ }\dfrac{{{\text{(}{{\text{K}}_{\text{1}}}\text{)}}_{\text{B}}}}{{{\text{(}{{\text{K}}_{\text{2}}}\text{)}}_{\text{B}}}}\text{=}\dfrac{\text{1}}{\text{9}}\text{ = }\dfrac{\text{A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{b}}}}{\text{R}{{\text{T}}_{\text{1}}}} \right)}}}{\text{A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{b}}}}{\text{R}{{\text{T}}_{\text{2}}}} \right)}}}\text{ }\]
\[\Rightarrow \dfrac{1}{9}\text{= }{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{b}}}}{\text{R}}\left( \dfrac{1}{{{\text{T}}_{\text{2}}}}-\dfrac{1}{{{\text{T}}_{\text{1}}}} \right)}}\]
Take a logarithm on both sides of the equation.
\[\begin{align}
& \Rightarrow \log \left( \dfrac{1}{9} \right)\text{= }\dfrac{{{\text{E}}_{\text{b}}}}{\text{R}}\text{ }\left( \dfrac{20}{220\text{ }\times \text{ }200} \right) \\
& \Rightarrow \log \left( \dfrac{1}{9} \right)\text{= }\dfrac{{{\text{E}}_{\text{b}}}}{\text{R}}\text{ }\left( \dfrac{1}{2200} \right) \\
& \text{ Rearrange equation to get the value of }{{\text{E}}_{\text{b}}}, \\
& {{\text{E}}_{\text{b}}}=2200\text{ R }\log \left( \dfrac{1}{9} \right)\text{ (B)} \\
\end{align}\]
Now from the A and B, we get
$\begin{align}
& \text{ }\dfrac{{{\text{E}}_{\text{a}}}}{{{\text{E}}_{\text{b}}}}\text{ = }\dfrac{\text{log}\left( \dfrac{\text{1}}{\text{3}} \right)}{\text{log}\left( \dfrac{\text{1}}{\text{9}} \right)} \\
& \Rightarrow \text{ }\dfrac{{{\text{E}}_{\text{a}}}}{{{\text{E}}_{\text{b}}}}\text{ = }\dfrac{\text{1}}{\text{2}} \\
& \Rightarrow \text{2}{{\text{E}}_{\text{a}}}\text{ = }{{\text{E}}_{\text{b}}} \\
\end{align}$
Thus the relation between activation energy of A and B is
$\text{2}{{\text{E}}_{\text{A}}}\text{ = }{{\text{E}}_{\text{B}}}$
Thus, (C) is the correct option.
Note:
The Arrhenius equation relates the rate constant with the temperature and activation energy. However rate of reaction is directly proportional to the rate constant. Thus whenever such a problem is asked, always make relation and then divide them by each other .This cancels out the extra terms and makes the equation simple and easy to solve.
Complete answer:
The Arrhenius equation is used for the calculations of activation energy.
$\text{ K = A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{RT}} \right)}}$ (1)
Where
${{\text{E}}_{\text{a}}}$ Is Arrhenius activation energy
A is the pre-exponential factor
R is gas constant and T is the absolute temperature in kelvin
According to the question, We know that,
For reaction A
$\text{ }{{\text{T}}_{\text{1}}}\text{=200 K and T2 = 220K}$
Let $\text{ }{{\text{K}}_{\text{1}}}$ be the rate for A and $\text{ }{{\text{K}}_{2}}$be the rate of reaction B
The relation between the rates of reaction A and B is given as,
\[\text{3 (}{{\text{r}}_{\text{1}}}{{\text{)}}_{^{^{_{\text{A}}}}}}\text{= }{{\left( {{\text{r}}_{\text{2}}} \right)}_{\text{A}}}\]
\[\begin{align}
& \text{where,} \\
& {{\text{(}{{\text{r}}_{\text{1}}}\text{)}}_{^{^{_{\text{A}}}}}}\text{= rate of reaction A at }{{\text{T}}_{\text{1}}}\text{ K} \\
& {{\left( {{\text{r}}_{\text{2}}} \right)}_{\text{A}}}\text{= rate of reaction A at }{{\text{T}}_{\text{2}}}\text{ K } \\
\end{align}\]
Since we know that,
$\begin{align}
& \text{Rate of reaction }\propto \text{ Rate constant } \\
& \Rightarrow \text{ 3 (}{{\text{K}}_{\text{1}}}{{\text{)}}_{\text{A}}}\text{=(}{{\text{K}}_{\text{2}}}{{\text{)}}_{\text{A}}} \\
\end{align}$
Where, ${{\text{K}}_{\text{1}}}$and ${{\text{K}}_{\text{2}}}$are the rate constant at temperature ${{\text{T}}_{\text{1}}}$ and \[{{\text{T}}_{\text{2}}}\]
On further simplification we get,
$\text{ }\dfrac{{{\text{(}{{\text{K}}_{\text{1}}}\text{)}}_{\text{A}}}}{{{\text{(}{{\text{K}}_{\text{2}}}\text{)}}_{\text{A}}}}\text{ = }\dfrac{\text{1}}{\text{3}}\text{ }$ (2)
Now using (1) and (2) we get,
\[\text{ }\dfrac{{{\text{(}{{\text{K}}_{\text{1}}}\text{)}}_{\text{A}}}}{{{\text{(}{{\text{K}}_{\text{2}}}\text{)}}_{\text{A}}}}\text{=}\dfrac{1}{3}\text{ = }\dfrac{\text{A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{1}}}} \right)}}}{\text{A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{2}}}} \right)}}}\text{ }\]
\[\begin{align}
& \Rightarrow \dfrac{1}{3}\text{= }\dfrac{\text{A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{1}}}} \right)}}}{\text{A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{2}}}} \right)}}} \\
& \Rightarrow \dfrac{1}{3}\text{= }{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{1}}}} \right)}}\text{ }{{\text{e}}^{\left( \dfrac{{{\text{E}}_{\text{a}}}}{\text{R}{{\text{T}}_{\text{2}}}} \right)}} \\
& \Rightarrow \dfrac{1}{3}\text{= }{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\left( \dfrac{1}{{{\text{T}}_{\text{2}}}}-\dfrac{1}{{{\text{T}}_{\text{1}}}} \right)}} \\
\end{align}\]
Let us substitute the value for temperature. we get
\[\begin{align}
& \Rightarrow \dfrac{1}{3}\text{= }{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\left( \dfrac{1}{220}-\dfrac{1}{200} \right)}} \\
& \Rightarrow \dfrac{1}{3}\text{= }{{\text{e}}^{\text{ }\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{ }\left( \dfrac{20}{220\text{ }\times \text{ }200} \right)}} \\
& \Rightarrow \dfrac{1}{3}\text{= }{{\text{e}}^{\text{ }\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{ }\left( \dfrac{20}{220\text{ }\times \text{ }200} \right)}} \\
\end{align}\]
Take a logarithm on both sides of the equation.
\[\begin{align}
& \Rightarrow \log \left( \dfrac{1}{3} \right)\text{= }\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{ }\left( \dfrac{20}{220\text{ }\times \text{ }200} \right) \\
& \Rightarrow \log \left( \dfrac{1}{3} \right)\text{= }\dfrac{{{\text{E}}_{\text{a}}}}{\text{R}}\text{ }\left( \dfrac{1}{2200} \right) \\
& \text{ Rearrange equation to get the value of }{{\text{E}}_{\text{a}}}, \\
& {{\text{E}}_{\text{a}}}=2200\text{ R }\log \left( \dfrac{1}{3} \right) \\
\end{align}\]
For reaction B
$\text{ }{{\text{T}}_{\text{1}}}\text{=200 K and }{{\text{T}}_{\text{2}}}\text{ = 220K}$
Let $\text{ }{{\text{K}}_{\text{1}}}$ be the rate for A and $\text{ }{{\text{K}}_{2}}$be the rate of reaction B
The relation between the rates of reaction A and B is given as,
\[\text{9 (}{{\text{r}}_{\text{1}}}{{\text{)}}_{^{^{\text{B}}}}}\text{= }{{\left( {{\text{r}}_{\text{2}}} \right)}_{\text{B}}}\]
\[\begin{align}
& \text{where,} \\
& {{\text{(}{{\text{r}}_{\text{1}}}\text{)}}_{^{^{_{\text{B}}}}}}\text{= rate of reaction B at }{{\text{T}}_{\text{1}}}\text{ K} \\
& {{\left( {{\text{r}}_{\text{2}}} \right)}_{\text{B}}}\text{= rate of reaction B at }{{\text{T}}_{\text{2}}}\text{ K } \\
\end{align}\]
Since we know that,
\[\begin{align}
& \text{Rate of reaction }\propto \text{ Rate constant } \\
& \Rightarrow \text{ 9 (}{{\text{K}}_{\text{1}}}{{\text{)}}_{\text{B}}}\text{=(}{{\text{K}}_{\text{2}}}{{\text{)}}_{\text{B}}} \\
\end{align}\]
Where, ${{\text{K}}_{\text{1}}}$and ${{\text{K}}_{\text{2}}}$are the rate constant at temperature ${{\text{T}}_{\text{1}}}$ and \[{{\text{T}}_{\text{2}}}\]
On further simplification we get,
\[\text{ }\dfrac{{{\text{(}{{\text{K}}_{\text{1}}}\text{)}}_{\text{B}}}}{{{\text{(}{{\text{K}}_{\text{2}}}\text{)}}_{\text{B}}}}\text{ = }\dfrac{\text{1}}{9}\text{ }\] (2)
By following the similar procedure as above we get,
\[\text{ }\dfrac{{{\text{(}{{\text{K}}_{\text{1}}}\text{)}}_{\text{B}}}}{{{\text{(}{{\text{K}}_{\text{2}}}\text{)}}_{\text{B}}}}\text{=}\dfrac{\text{1}}{\text{9}}\text{ = }\dfrac{\text{A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{b}}}}{\text{R}{{\text{T}}_{\text{1}}}} \right)}}}{\text{A}{{\text{e}}^{\left( \text{-}\dfrac{{{\text{E}}_{\text{b}}}}{\text{R}{{\text{T}}_{\text{2}}}} \right)}}}\text{ }\]
\[\Rightarrow \dfrac{1}{9}\text{= }{{\text{e}}^{\text{-}\dfrac{{{\text{E}}_{\text{b}}}}{\text{R}}\left( \dfrac{1}{{{\text{T}}_{\text{2}}}}-\dfrac{1}{{{\text{T}}_{\text{1}}}} \right)}}\]
Take a logarithm on both sides of the equation.
\[\begin{align}
& \Rightarrow \log \left( \dfrac{1}{9} \right)\text{= }\dfrac{{{\text{E}}_{\text{b}}}}{\text{R}}\text{ }\left( \dfrac{20}{220\text{ }\times \text{ }200} \right) \\
& \Rightarrow \log \left( \dfrac{1}{9} \right)\text{= }\dfrac{{{\text{E}}_{\text{b}}}}{\text{R}}\text{ }\left( \dfrac{1}{2200} \right) \\
& \text{ Rearrange equation to get the value of }{{\text{E}}_{\text{b}}}, \\
& {{\text{E}}_{\text{b}}}=2200\text{ R }\log \left( \dfrac{1}{9} \right)\text{ (B)} \\
\end{align}\]
Now from the A and B, we get
$\begin{align}
& \text{ }\dfrac{{{\text{E}}_{\text{a}}}}{{{\text{E}}_{\text{b}}}}\text{ = }\dfrac{\text{log}\left( \dfrac{\text{1}}{\text{3}} \right)}{\text{log}\left( \dfrac{\text{1}}{\text{9}} \right)} \\
& \Rightarrow \text{ }\dfrac{{{\text{E}}_{\text{a}}}}{{{\text{E}}_{\text{b}}}}\text{ = }\dfrac{\text{1}}{\text{2}} \\
& \Rightarrow \text{2}{{\text{E}}_{\text{a}}}\text{ = }{{\text{E}}_{\text{b}}} \\
\end{align}$
Thus the relation between activation energy of A and B is
$\text{2}{{\text{E}}_{\text{A}}}\text{ = }{{\text{E}}_{\text{B}}}$
Thus, (C) is the correct option.
Note:
The Arrhenius equation relates the rate constant with the temperature and activation energy. However rate of reaction is directly proportional to the rate constant. Thus whenever such a problem is asked, always make relation and then divide them by each other .This cancels out the extra terms and makes the equation simple and easy to solve.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

