
Obtain the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2
(a)10050
(b)5050
(c)5000
(d)50000
Answer
531.3k+ views
2 likes
Hint: For solving this problem, we have to first find out the numbers which are divisible by 5 up to 1000. Then, we have to eliminate the numbers which are divisible by 2. Now, we evaluate the number of terms in this arithmetic progression. Finally, we obtain the sum of series by using the formula of A.P.
Complete step-by-step answer:
According to our problem, the positive integers which are divisible by 5 are 5,10,15,20........1000 now, the integers out of these which are divisible by 2 are 10,20,30..............1000. Eliminating them, we get the final series as 5,15,25.....995.
Thus, we have to find the sum of positive integers 5,15,25......995
If n is the number of terms in it, so by using the general term for an A.P.:
Now, putting values of variables as = 995, a = 5 and d = 10, we get
Thus, the sum of numbers in A.P.:
So, putting values of variables as n = 100, a = 5 and l = 995, we get
Therefore, the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2 is 50000.
Hence, option (d) is correct.
Note: This problem can alternatively be solved by using the general formula for sum of series in arithmetic progression which can be stated as . One must remember that for solving any problem in which a number of terms are required, we can form an A.P. and then apply the formula to evaluate the number of terms.
Complete step-by-step answer:
According to our problem, the positive integers which are divisible by 5 are 5,10,15,20........1000 now, the integers out of these which are divisible by 2 are 10,20,30..............1000. Eliminating them, we get the final series as 5,15,25.....995.
Thus, we have to find the sum of positive integers 5,15,25......995
If n is the number of terms in it, so by using the general term for an A.P.:
Now, putting values of variables as
Thus, the sum of numbers in A.P.:
So, putting values of variables as n = 100, a = 5 and l = 995, we get
Therefore, the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2 is 50000.
Hence, option (d) is correct.
Note: This problem can alternatively be solved by using the general formula for sum of series in arithmetic progression which can be stated as
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
How many moles and how many grams of NaCl are present class 11 chemistry CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

Plants which grow in shade are called A Sciophytes class 11 biology CBSE

A renewable exhaustible natural resource is A Petroleum class 11 biology CBSE

In which of the following gametophytes is not independent class 11 biology CBSE

Find the molecular mass of Sulphuric Acid class 11 chemistry CBSE
