
Obtain the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2
(a)10050
(b)5050
(c)5000
(d)50000
Answer
600.9k+ views
Hint: For solving this problem, we have to first find out the numbers which are divisible by 5 up to 1000. Then, we have to eliminate the numbers which are divisible by 2. Now, we evaluate the number of terms in this arithmetic progression. Finally, we obtain the sum of series by using the formula of A.P.
Complete step-by-step answer:
According to our problem, the positive integers which are divisible by 5 are 5,10,15,20........1000 now, the integers out of these which are divisible by 2 are 10,20,30..............1000. Eliminating them, we get the final series as 5,15,25.....995.
Thus, we have to find the sum of positive integers 5,15,25......995
If n is the number of terms in it, so by using the general term for an A.P.: ${{a}_{n}}=a+(n-1)\cdot d$
Now, putting values of variables as ${{a}_{n}}$ = 995, a = 5 and d = 10, we get
$\begin{align}
& 995=5+(n-1)\cdot 10 \\
& 995-5=(n-1)\cdot 10 \\
& 990=(n-1)\cdot 10 \\
& n-1=\dfrac{990}{10} \\
& n-1=99 \\
& n=100 \\
\end{align}$
Thus, the sum of numbers in A.P.: ${{S}_{n}}=\dfrac{n}{2}\left( a+l \right)$
So, putting values of variables as n = 100, a = 5 and l = 995, we get
$\begin{align}
& S=\dfrac{100}{2}\left( 5+995 \right) \\
& S=50\times 1000 \\
& S=50000 \\
\end{align}$
Therefore, the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2 is 50000.
Hence, option (d) is correct.
Note: This problem can alternatively be solved by using the general formula for sum of series in arithmetic progression which can be stated as $S=\dfrac{n}{2}\left( 2a+(n-1)\cdot d \right)$. One must remember that for solving any problem in which a number of terms are required, we can form an A.P. and then apply the formula to evaluate the number of terms.
Complete step-by-step answer:
According to our problem, the positive integers which are divisible by 5 are 5,10,15,20........1000 now, the integers out of these which are divisible by 2 are 10,20,30..............1000. Eliminating them, we get the final series as 5,15,25.....995.
Thus, we have to find the sum of positive integers 5,15,25......995
If n is the number of terms in it, so by using the general term for an A.P.: ${{a}_{n}}=a+(n-1)\cdot d$
Now, putting values of variables as ${{a}_{n}}$ = 995, a = 5 and d = 10, we get
$\begin{align}
& 995=5+(n-1)\cdot 10 \\
& 995-5=(n-1)\cdot 10 \\
& 990=(n-1)\cdot 10 \\
& n-1=\dfrac{990}{10} \\
& n-1=99 \\
& n=100 \\
\end{align}$
Thus, the sum of numbers in A.P.: ${{S}_{n}}=\dfrac{n}{2}\left( a+l \right)$
So, putting values of variables as n = 100, a = 5 and l = 995, we get
$\begin{align}
& S=\dfrac{100}{2}\left( 5+995 \right) \\
& S=50\times 1000 \\
& S=50000 \\
\end{align}$
Therefore, the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2 is 50000.
Hence, option (d) is correct.
Note: This problem can alternatively be solved by using the general formula for sum of series in arithmetic progression which can be stated as $S=\dfrac{n}{2}\left( 2a+(n-1)\cdot d \right)$. One must remember that for solving any problem in which a number of terms are required, we can form an A.P. and then apply the formula to evaluate the number of terms.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

