
Number of values of x (real or complex) simultaneously satisfying the system of equations
1 + z + {z^2} + {z^3} + ........ + {z^{17}} = 0 $
And
$ 1 + z + {z^2} + {z^3} + ........ + {z^{13}} = 0 $
A.-1
B.2
C.3
D.4
Answer
572.1k+ views
Hint: We will use the given equations to find the value of 1 through simplification. These values will then be distributed in any equation to check whether it satisfies the system or not.
Complete step-by-step answer:
We have,
$ 1 + z + {z^2} + {z^3} + ........ + {z^{17}} = 0...........(1) $
$ 1 + z + {z^2} + {z^3} + ........ + {z^{13}} = 0..........(2) $
From (2), it can be seen that the sum of terms till $ {z^{13}} $ is 0.
Remaining terms from (1) are:
$ {z^{14}} + {z^{15}} + {z^{16}} + {z^{17}} = 0 $
Taking $ {z^{14}} $ common, we get:
$ {z^{14}}(1 + z + {z^2} + {z^3}) = 0 $
Factorising:
$ {z^{14}}\left[ {(1 + {z^2}) + z(1 + {z^2})} \right] = 0 $
$ {z^{14}}\left[ {(1 + {z^2})(1 + z)} \right] = 0 $
$ {z^{14}}\left[ {\{ {z^2} - {{(\sqrt { - 1} )}^2}\} (1 + z)} \right] = 0 $
$ {z^{14}}\left[ {(z + i)(z - i)(1 + z)} \right] = 0 $
$ ({\text{As }}\sqrt { - 1} = i{\text{ and using }}{{\text{a}}^2} - {b^2} = (a + b)(a - b)] $
From here, we get:
$ {z^{14}} = 0,z + i = 0,z - i = 0,z + 1 = 0 $
Values of z obtained are:
z = 0,-i, i , -1
Substituting these in (2) and checking which will satisfy the system of equations.
z = 0:
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 + 0 + 0......0 \ne 0 $
Does not satisfy the equation.
$ z = - i \Rightarrow {z^2} = {i^2} = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 - i - 1 + i + {z^{12}} + {z^{13}} $
All terms cancel out except z12 and z13.
\[{z^{12}} + {z^{13}} = 0\]
$ 1 - i \ne 0 $
Does not satisfy the equation.
$ z = i \Rightarrow {z^2} = {i^2} = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
All terms cancel out except z12 and z13.
\[{z^{12}} + {z^{13}} = 0\]
$ 1 + i \ne 0 $
Does not satisfy the equation.
$ z = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 - 1 + 1 - 1 + 1...... - 1 = 0 $
Satisfy the equation.
Therefore out of all the values of z, only ‘-1’ satisfies the system of equations and hence the correct option is A)-1
So, the correct answer is “Option A”.
Note: ‘i’ used here stands for iota and is used for representing $ \sqrt { - 1} $ .
It's important values to remember are:
$ {i^2} = - 1,{i^4} = 1 $
And all multiples of 4 in its power give the answer 1 and multiples of 2 give (-1).
Complete step-by-step answer:
We have,
$ 1 + z + {z^2} + {z^3} + ........ + {z^{17}} = 0...........(1) $
$ 1 + z + {z^2} + {z^3} + ........ + {z^{13}} = 0..........(2) $
From (2), it can be seen that the sum of terms till $ {z^{13}} $ is 0.
Remaining terms from (1) are:
$ {z^{14}} + {z^{15}} + {z^{16}} + {z^{17}} = 0 $
Taking $ {z^{14}} $ common, we get:
$ {z^{14}}(1 + z + {z^2} + {z^3}) = 0 $
Factorising:
$ {z^{14}}\left[ {(1 + {z^2}) + z(1 + {z^2})} \right] = 0 $
$ {z^{14}}\left[ {(1 + {z^2})(1 + z)} \right] = 0 $
$ {z^{14}}\left[ {\{ {z^2} - {{(\sqrt { - 1} )}^2}\} (1 + z)} \right] = 0 $
$ {z^{14}}\left[ {(z + i)(z - i)(1 + z)} \right] = 0 $
$ ({\text{As }}\sqrt { - 1} = i{\text{ and using }}{{\text{a}}^2} - {b^2} = (a + b)(a - b)] $
From here, we get:
$ {z^{14}} = 0,z + i = 0,z - i = 0,z + 1 = 0 $
Values of z obtained are:
z = 0,-i, i , -1
Substituting these in (2) and checking which will satisfy the system of equations.
z = 0:
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 + 0 + 0......0 \ne 0 $
Does not satisfy the equation.
$ z = - i \Rightarrow {z^2} = {i^2} = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 - i - 1 + i + {z^{12}} + {z^{13}} $
All terms cancel out except z12 and z13.
\[{z^{12}} + {z^{13}} = 0\]
$ 1 - i \ne 0 $
Does not satisfy the equation.
$ z = i \Rightarrow {z^2} = {i^2} = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
All terms cancel out except z12 and z13.
\[{z^{12}} + {z^{13}} = 0\]
$ 1 + i \ne 0 $
Does not satisfy the equation.
$ z = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 - 1 + 1 - 1 + 1...... - 1 = 0 $
Satisfy the equation.
Therefore out of all the values of z, only ‘-1’ satisfies the system of equations and hence the correct option is A)-1
So, the correct answer is “Option A”.
Note: ‘i’ used here stands for iota and is used for representing $ \sqrt { - 1} $ .
It's important values to remember are:
$ {i^2} = - 1,{i^4} = 1 $
And all multiples of 4 in its power give the answer 1 and multiples of 2 give (-1).
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

