
Number of values of x (real or complex) simultaneously satisfying the system of equations
1 + z + {z^2} + {z^3} + ........ + {z^{17}} = 0 $
And
$ 1 + z + {z^2} + {z^3} + ........ + {z^{13}} = 0 $
A.-1
B.2
C.3
D.4
Answer
525.9k+ views
Hint: We will use the given equations to find the value of 1 through simplification. These values will then be distributed in any equation to check whether it satisfies the system or not.
Complete step-by-step answer:
We have,
$ 1 + z + {z^2} + {z^3} + ........ + {z^{17}} = 0...........(1) $
$ 1 + z + {z^2} + {z^3} + ........ + {z^{13}} = 0..........(2) $
From (2), it can be seen that the sum of terms till $ {z^{13}} $ is 0.
Remaining terms from (1) are:
$ {z^{14}} + {z^{15}} + {z^{16}} + {z^{17}} = 0 $
Taking $ {z^{14}} $ common, we get:
$ {z^{14}}(1 + z + {z^2} + {z^3}) = 0 $
Factorising:
$ {z^{14}}\left[ {(1 + {z^2}) + z(1 + {z^2})} \right] = 0 $
$ {z^{14}}\left[ {(1 + {z^2})(1 + z)} \right] = 0 $
$ {z^{14}}\left[ {\{ {z^2} - {{(\sqrt { - 1} )}^2}\} (1 + z)} \right] = 0 $
$ {z^{14}}\left[ {(z + i)(z - i)(1 + z)} \right] = 0 $
$ ({\text{As }}\sqrt { - 1} = i{\text{ and using }}{{\text{a}}^2} - {b^2} = (a + b)(a - b)] $
From here, we get:
$ {z^{14}} = 0,z + i = 0,z - i = 0,z + 1 = 0 $
Values of z obtained are:
z = 0,-i, i , -1
Substituting these in (2) and checking which will satisfy the system of equations.
z = 0:
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 + 0 + 0......0 \ne 0 $
Does not satisfy the equation.
$ z = - i \Rightarrow {z^2} = {i^2} = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 - i - 1 + i + {z^{12}} + {z^{13}} $
All terms cancel out except z12 and z13.
\[{z^{12}} + {z^{13}} = 0\]
$ 1 - i \ne 0 $
Does not satisfy the equation.
$ z = i \Rightarrow {z^2} = {i^2} = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
All terms cancel out except z12 and z13.
\[{z^{12}} + {z^{13}} = 0\]
$ 1 + i \ne 0 $
Does not satisfy the equation.
$ z = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 - 1 + 1 - 1 + 1...... - 1 = 0 $
Satisfy the equation.
Therefore out of all the values of z, only ‘-1’ satisfies the system of equations and hence the correct option is A)-1
So, the correct answer is “Option A”.
Note: ‘i’ used here stands for iota and is used for representing $ \sqrt { - 1} $ .
It's important values to remember are:
$ {i^2} = - 1,{i^4} = 1 $
And all multiples of 4 in its power give the answer 1 and multiples of 2 give (-1).
Complete step-by-step answer:
We have,
$ 1 + z + {z^2} + {z^3} + ........ + {z^{17}} = 0...........(1) $
$ 1 + z + {z^2} + {z^3} + ........ + {z^{13}} = 0..........(2) $
From (2), it can be seen that the sum of terms till $ {z^{13}} $ is 0.
Remaining terms from (1) are:
$ {z^{14}} + {z^{15}} + {z^{16}} + {z^{17}} = 0 $
Taking $ {z^{14}} $ common, we get:
$ {z^{14}}(1 + z + {z^2} + {z^3}) = 0 $
Factorising:
$ {z^{14}}\left[ {(1 + {z^2}) + z(1 + {z^2})} \right] = 0 $
$ {z^{14}}\left[ {(1 + {z^2})(1 + z)} \right] = 0 $
$ {z^{14}}\left[ {\{ {z^2} - {{(\sqrt { - 1} )}^2}\} (1 + z)} \right] = 0 $
$ {z^{14}}\left[ {(z + i)(z - i)(1 + z)} \right] = 0 $
$ ({\text{As }}\sqrt { - 1} = i{\text{ and using }}{{\text{a}}^2} - {b^2} = (a + b)(a - b)] $
From here, we get:
$ {z^{14}} = 0,z + i = 0,z - i = 0,z + 1 = 0 $
Values of z obtained are:
z = 0,-i, i , -1
Substituting these in (2) and checking which will satisfy the system of equations.
z = 0:
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 + 0 + 0......0 \ne 0 $
Does not satisfy the equation.
$ z = - i \Rightarrow {z^2} = {i^2} = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 - i - 1 + i + {z^{12}} + {z^{13}} $
All terms cancel out except z12 and z13.
\[{z^{12}} + {z^{13}} = 0\]
$ 1 - i \ne 0 $
Does not satisfy the equation.
$ z = i \Rightarrow {z^2} = {i^2} = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
All terms cancel out except z12 and z13.
\[{z^{12}} + {z^{13}} = 0\]
$ 1 + i \ne 0 $
Does not satisfy the equation.
$ z = - 1 $
$ 1 + z + {z^2} + .........{z^{13}} = 0 $
$ 1 - 1 + 1 - 1 + 1...... - 1 = 0 $
Satisfy the equation.
Therefore out of all the values of z, only ‘-1’ satisfies the system of equations and hence the correct option is A)-1
So, the correct answer is “Option A”.
Note: ‘i’ used here stands for iota and is used for representing $ \sqrt { - 1} $ .
It's important values to remember are:
$ {i^2} = - 1,{i^4} = 1 $
And all multiples of 4 in its power give the answer 1 and multiples of 2 give (-1).
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
