
What is the number of complex numbers z satisfying ${z^3} = \overline z $?
$
{\text{A}}{\text{. 1}} \\
{\text{B}}{\text{. 2}} \\
{\text{C}}{\text{. 4}} \\
{\text{D}}{\text{. 5}} \\
$
Answer
599.1k+ views
Hint- Here, we will proceed by assuming the complex number which satisfies the given equation as $z = a + ib$ and then we will apply the formula ${\left( {x + y} \right)^3} = {x^3} + {y^3} + 3{x^2}y + 3x{y^2}$ and \[\overline z = \overline {a + ib} = a - ib\] in the equation.
Complete Step-by-Step solution:
Let us suppose that any complex number $z = a + ib$ satisfies the equation ${z^3} = \overline z {\text{ }} \to (1{\text{)}}$
By putting $z = a + ib$ in equation (1), we get
${\left( {a + ib} \right)^3} = \overline {a + ib} {\text{ }} \to {\text{(2)}}$
Using the formula ${\left( {x + y} \right)^3} = {x^3} + {y^3} + 3{x^2}y + 3x{y^2}$ in the equation (2), we have
\[
\Rightarrow {a^3} + {\left( {ib} \right)^3} + 3{a^2}\left( {ib} \right) + 3a{\left( {ib} \right)^2} = \overline {a + ib} \\
\Rightarrow {a^3} + {i^3}{b^3} + 3i{a^2}b + 3a\left( {{i^2}} \right)\left( {{b^2}} \right) = \overline {a + ib} \\
\Rightarrow {a^3} + \left( {{i^2}} \right)\left( i \right){b^3} + 3i{a^2}b + 3a\left( {{i^2}} \right)\left( {{b^2}} \right) = \overline {a + ib} \\
\]
Using $
i = \sqrt { - 1} \\
\Rightarrow {i^2} = - 1 \\
$ in the above equation, we get
\[
\Rightarrow {a^3} + \left( { - 1} \right)\left( i \right){b^3} + 3i{a^2}b + 3a\left( { - 1} \right)\left( {{b^2}} \right) = \overline {a + ib} \\
\Rightarrow {a^3} - i{b^3} + 3i{a^2}b - 3a{b^2} = \overline {a + ib} {\text{ }} \to {\text{(3)}} \\
\]
As we know that the conjugate of any complex number $z = a + ib$ is given by
\[\overline z = \overline {a + ib} = a - ib{\text{ }}\]
Using the above formula in equation (3), we get
\[
\Rightarrow {a^3} - i{b^3} + 3i{a^2}b - 3a{b^2} = a - ib \\
\Rightarrow \left( {{a^3} - 3a{b^2}} \right) - i\left( {{b^3} - 3{a^2}b} \right) = a - ib \\
\]
By comparing the real and imaginary parts of the complex numbers given on the LHS and the RHS of the above equation, we get
\[
{a^3} - 3a{b^2} = a \\
\Rightarrow {a^3} - 3a{b^2} - a = 0 \\
\Rightarrow a\left( {{a^2} - 3{b^2} - 1} \right) = 0 \\
\]
Either \[a = 0\] or \[
{a^2} - 3{b^2} - 1 = 0 \\
\Rightarrow {a^2} = 3{b^2} + 1{\text{ }} \to {\text{(4)}} \\
\]
and \[
{b^3} - 3{a^2}b = b \\
\Rightarrow {b^3} - 3{a^2}b - b = 0 \\
\Rightarrow b\left( {{b^2} - 3{a^2} - 1} \right) = 0 \\
\]
Either \[b = 0\] or \[{b^2} - 3{a^2} - 1 = 0{\text{ }} \to {\text{(5)}}\]
By substituting equation (4) in equation (5), we get
\[
\Rightarrow {b^2} - 3\left( {3{b^2} + 1} \right) - 1 = 0 \\
\Rightarrow {b^2} - 9{b^2} - 3 - 1 = 0 \\
\Rightarrow - 8{b^2} - 4 = 0 \\
\Rightarrow 8{b^2} = - 4 \\
\Rightarrow {b^2} = \dfrac{{ - 4}}{8} = \dfrac{{ - 1}}{2} \\
\Rightarrow b = \pm \sqrt {\dfrac{{ - 1}}{2}} = \pm \dfrac{{\sqrt { - 1} }}{{\sqrt 2 }} \\
\Rightarrow b = \pm \dfrac{i}{{\sqrt 2 }} \\
\]
Put \[b = \dfrac{i}{{\sqrt 2 }}\] in equation (4), we get
\[
\Rightarrow {a^2} = 3{\left( {\dfrac{i}{{\sqrt 2 }}} \right)^2} + 1 = 3\left[ {\dfrac{{{i^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}}} \right] + 1 = 3\left[ {\dfrac{{ - 1}}{2}} \right] + 1 = - \dfrac{3}{2} + 1 = \dfrac{{ - 3 + 2}}{2} = - \dfrac{1}{2} \\
\Rightarrow a = \pm \sqrt {\dfrac{{ - 1}}{2}} = \pm \dfrac{{\sqrt { - 1} }}{{\sqrt 2 }} = \pm \dfrac{i}{{\sqrt 2 }} \\
\]
Put \[b = - \dfrac{i}{{\sqrt 2 }}\] in equation (4), we get
\[
\Rightarrow {a^2} = 3{\left( { - \dfrac{i}{{\sqrt 2 }}} \right)^2} + 1 = 3\left[ {\dfrac{{{i^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}}} \right] + 1 = 3\left[ {\dfrac{{ - 1}}{2}} \right] + 1 = - \dfrac{3}{2} + 1 = \dfrac{{ - 3 + 2}}{2} = - \dfrac{1}{2} \\
\Rightarrow a = \pm \sqrt {\dfrac{{ - 1}}{2}} = \pm \dfrac{{\sqrt { - 1} }}{{\sqrt 2 }} = \pm \dfrac{i}{{\sqrt 2 }} \\
\]
Therefore, a = 0, b = 0, a = \[ \pm \dfrac{i}{{\sqrt 2 }}\] and b = \[ \pm \dfrac{i}{{\sqrt 2 }}\]
Corresponding to a = 0 and b = 0, the complex number is $
z = a + ib = 0 + i\left( 0 \right) \\
\Rightarrow z = 0{\text{ }} \to {\text{(5)}} \\
$
Corresponding to a = \[ \pm \dfrac{i}{{\sqrt 2 }}\] and b = \[ \pm \dfrac{i}{{\sqrt 2 }}\], the complex numbers are $z = a + ib = \pm \dfrac{i}{{\sqrt 2 }} + i\left( { \pm \dfrac{i}{{\sqrt 2 }}} \right)$ which includes the following complex numbers
$
z = \dfrac{i}{{\sqrt 2 }} + i\left( {\dfrac{i}{{\sqrt 2 }}} \right) = \dfrac{i}{{\sqrt 2 }} + \dfrac{{{i^2}}}{{\sqrt 2 }} = \dfrac{i}{{\sqrt 2 }} + \dfrac{{ - 1}}{{\sqrt 2 }} \\
\Rightarrow z = \dfrac{{ - 1}}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(6)}} \\
$
or $
z = - \dfrac{i}{{\sqrt 2 }} + i\left( { - \dfrac{i}{{\sqrt 2 }}} \right) = - \dfrac{i}{{\sqrt 2 }} - \dfrac{{{i^2}}}{{\sqrt 2 }} = - \dfrac{i}{{\sqrt 2 }} - \left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right) = - \dfrac{i}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow z = \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(7)}} \\
$
or \[
z = \dfrac{i}{{\sqrt 2 }} + i\left( { - \dfrac{i}{{\sqrt 2 }}} \right) = \dfrac{i}{{\sqrt 2 }} - \dfrac{{{i^2}}}{{\sqrt 2 }} = \dfrac{i}{{\sqrt 2 }} - \left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right) = \dfrac{i}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow z = \dfrac{1}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(8)}} \\
\]
or $
z = - \dfrac{i}{{\sqrt 2 }} + i\left( {\dfrac{i}{{\sqrt 2 }}} \right) = - \dfrac{i}{{\sqrt 2 }} + \dfrac{{{i^2}}}{{\sqrt 2 }} = - \dfrac{i}{{\sqrt 2 }} + \dfrac{{ - 1}}{{\sqrt 2 }} = - \dfrac{i}{{\sqrt 2 }} - \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow z = - \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(9)}} \\
$
Therefore, z = 0, $z = \dfrac{{ - 1}}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}$, $z = \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}$, \[z = \dfrac{1}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}\] and $z = - \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}$ satisfies the equation ${z^3} = \overline z $ which means there are total 5 complex numbers satisfying the given equation.
Hence, option D is correct.
Note- In this particular problem, we have compared two complex numbers which are equated together i.e., $a + ib = c + id$ this gives that both the real part and the imaginary part of the complex numbers given on the LHS and the RHS of the equation $a + ib = c + id$ will always be equal i.e., a = c and b = d.
Complete Step-by-Step solution:
Let us suppose that any complex number $z = a + ib$ satisfies the equation ${z^3} = \overline z {\text{ }} \to (1{\text{)}}$
By putting $z = a + ib$ in equation (1), we get
${\left( {a + ib} \right)^3} = \overline {a + ib} {\text{ }} \to {\text{(2)}}$
Using the formula ${\left( {x + y} \right)^3} = {x^3} + {y^3} + 3{x^2}y + 3x{y^2}$ in the equation (2), we have
\[
\Rightarrow {a^3} + {\left( {ib} \right)^3} + 3{a^2}\left( {ib} \right) + 3a{\left( {ib} \right)^2} = \overline {a + ib} \\
\Rightarrow {a^3} + {i^3}{b^3} + 3i{a^2}b + 3a\left( {{i^2}} \right)\left( {{b^2}} \right) = \overline {a + ib} \\
\Rightarrow {a^3} + \left( {{i^2}} \right)\left( i \right){b^3} + 3i{a^2}b + 3a\left( {{i^2}} \right)\left( {{b^2}} \right) = \overline {a + ib} \\
\]
Using $
i = \sqrt { - 1} \\
\Rightarrow {i^2} = - 1 \\
$ in the above equation, we get
\[
\Rightarrow {a^3} + \left( { - 1} \right)\left( i \right){b^3} + 3i{a^2}b + 3a\left( { - 1} \right)\left( {{b^2}} \right) = \overline {a + ib} \\
\Rightarrow {a^3} - i{b^3} + 3i{a^2}b - 3a{b^2} = \overline {a + ib} {\text{ }} \to {\text{(3)}} \\
\]
As we know that the conjugate of any complex number $z = a + ib$ is given by
\[\overline z = \overline {a + ib} = a - ib{\text{ }}\]
Using the above formula in equation (3), we get
\[
\Rightarrow {a^3} - i{b^3} + 3i{a^2}b - 3a{b^2} = a - ib \\
\Rightarrow \left( {{a^3} - 3a{b^2}} \right) - i\left( {{b^3} - 3{a^2}b} \right) = a - ib \\
\]
By comparing the real and imaginary parts of the complex numbers given on the LHS and the RHS of the above equation, we get
\[
{a^3} - 3a{b^2} = a \\
\Rightarrow {a^3} - 3a{b^2} - a = 0 \\
\Rightarrow a\left( {{a^2} - 3{b^2} - 1} \right) = 0 \\
\]
Either \[a = 0\] or \[
{a^2} - 3{b^2} - 1 = 0 \\
\Rightarrow {a^2} = 3{b^2} + 1{\text{ }} \to {\text{(4)}} \\
\]
and \[
{b^3} - 3{a^2}b = b \\
\Rightarrow {b^3} - 3{a^2}b - b = 0 \\
\Rightarrow b\left( {{b^2} - 3{a^2} - 1} \right) = 0 \\
\]
Either \[b = 0\] or \[{b^2} - 3{a^2} - 1 = 0{\text{ }} \to {\text{(5)}}\]
By substituting equation (4) in equation (5), we get
\[
\Rightarrow {b^2} - 3\left( {3{b^2} + 1} \right) - 1 = 0 \\
\Rightarrow {b^2} - 9{b^2} - 3 - 1 = 0 \\
\Rightarrow - 8{b^2} - 4 = 0 \\
\Rightarrow 8{b^2} = - 4 \\
\Rightarrow {b^2} = \dfrac{{ - 4}}{8} = \dfrac{{ - 1}}{2} \\
\Rightarrow b = \pm \sqrt {\dfrac{{ - 1}}{2}} = \pm \dfrac{{\sqrt { - 1} }}{{\sqrt 2 }} \\
\Rightarrow b = \pm \dfrac{i}{{\sqrt 2 }} \\
\]
Put \[b = \dfrac{i}{{\sqrt 2 }}\] in equation (4), we get
\[
\Rightarrow {a^2} = 3{\left( {\dfrac{i}{{\sqrt 2 }}} \right)^2} + 1 = 3\left[ {\dfrac{{{i^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}}} \right] + 1 = 3\left[ {\dfrac{{ - 1}}{2}} \right] + 1 = - \dfrac{3}{2} + 1 = \dfrac{{ - 3 + 2}}{2} = - \dfrac{1}{2} \\
\Rightarrow a = \pm \sqrt {\dfrac{{ - 1}}{2}} = \pm \dfrac{{\sqrt { - 1} }}{{\sqrt 2 }} = \pm \dfrac{i}{{\sqrt 2 }} \\
\]
Put \[b = - \dfrac{i}{{\sqrt 2 }}\] in equation (4), we get
\[
\Rightarrow {a^2} = 3{\left( { - \dfrac{i}{{\sqrt 2 }}} \right)^2} + 1 = 3\left[ {\dfrac{{{i^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}}} \right] + 1 = 3\left[ {\dfrac{{ - 1}}{2}} \right] + 1 = - \dfrac{3}{2} + 1 = \dfrac{{ - 3 + 2}}{2} = - \dfrac{1}{2} \\
\Rightarrow a = \pm \sqrt {\dfrac{{ - 1}}{2}} = \pm \dfrac{{\sqrt { - 1} }}{{\sqrt 2 }} = \pm \dfrac{i}{{\sqrt 2 }} \\
\]
Therefore, a = 0, b = 0, a = \[ \pm \dfrac{i}{{\sqrt 2 }}\] and b = \[ \pm \dfrac{i}{{\sqrt 2 }}\]
Corresponding to a = 0 and b = 0, the complex number is $
z = a + ib = 0 + i\left( 0 \right) \\
\Rightarrow z = 0{\text{ }} \to {\text{(5)}} \\
$
Corresponding to a = \[ \pm \dfrac{i}{{\sqrt 2 }}\] and b = \[ \pm \dfrac{i}{{\sqrt 2 }}\], the complex numbers are $z = a + ib = \pm \dfrac{i}{{\sqrt 2 }} + i\left( { \pm \dfrac{i}{{\sqrt 2 }}} \right)$ which includes the following complex numbers
$
z = \dfrac{i}{{\sqrt 2 }} + i\left( {\dfrac{i}{{\sqrt 2 }}} \right) = \dfrac{i}{{\sqrt 2 }} + \dfrac{{{i^2}}}{{\sqrt 2 }} = \dfrac{i}{{\sqrt 2 }} + \dfrac{{ - 1}}{{\sqrt 2 }} \\
\Rightarrow z = \dfrac{{ - 1}}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(6)}} \\
$
or $
z = - \dfrac{i}{{\sqrt 2 }} + i\left( { - \dfrac{i}{{\sqrt 2 }}} \right) = - \dfrac{i}{{\sqrt 2 }} - \dfrac{{{i^2}}}{{\sqrt 2 }} = - \dfrac{i}{{\sqrt 2 }} - \left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right) = - \dfrac{i}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow z = \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(7)}} \\
$
or \[
z = \dfrac{i}{{\sqrt 2 }} + i\left( { - \dfrac{i}{{\sqrt 2 }}} \right) = \dfrac{i}{{\sqrt 2 }} - \dfrac{{{i^2}}}{{\sqrt 2 }} = \dfrac{i}{{\sqrt 2 }} - \left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right) = \dfrac{i}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow z = \dfrac{1}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(8)}} \\
\]
or $
z = - \dfrac{i}{{\sqrt 2 }} + i\left( {\dfrac{i}{{\sqrt 2 }}} \right) = - \dfrac{i}{{\sqrt 2 }} + \dfrac{{{i^2}}}{{\sqrt 2 }} = - \dfrac{i}{{\sqrt 2 }} + \dfrac{{ - 1}}{{\sqrt 2 }} = - \dfrac{i}{{\sqrt 2 }} - \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow z = - \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(9)}} \\
$
Therefore, z = 0, $z = \dfrac{{ - 1}}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}$, $z = \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}$, \[z = \dfrac{1}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}\] and $z = - \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}$ satisfies the equation ${z^3} = \overline z $ which means there are total 5 complex numbers satisfying the given equation.
Hence, option D is correct.
Note- In this particular problem, we have compared two complex numbers which are equated together i.e., $a + ib = c + id$ this gives that both the real part and the imaginary part of the complex numbers given on the LHS and the RHS of the equation $a + ib = c + id$ will always be equal i.e., a = c and b = d.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

