
What is the number of complex numbers z satisfying ${z^3} = \overline z $?
$
{\text{A}}{\text{. 1}} \\
{\text{B}}{\text{. 2}} \\
{\text{C}}{\text{. 4}} \\
{\text{D}}{\text{. 5}} \\
$
Answer
613.2k+ views
Hint- Here, we will proceed by assuming the complex number which satisfies the given equation as $z = a + ib$ and then we will apply the formula ${\left( {x + y} \right)^3} = {x^3} + {y^3} + 3{x^2}y + 3x{y^2}$ and \[\overline z = \overline {a + ib} = a - ib\] in the equation.
Complete Step-by-Step solution:
Let us suppose that any complex number $z = a + ib$ satisfies the equation ${z^3} = \overline z {\text{ }} \to (1{\text{)}}$
By putting $z = a + ib$ in equation (1), we get
${\left( {a + ib} \right)^3} = \overline {a + ib} {\text{ }} \to {\text{(2)}}$
Using the formula ${\left( {x + y} \right)^3} = {x^3} + {y^3} + 3{x^2}y + 3x{y^2}$ in the equation (2), we have
\[
\Rightarrow {a^3} + {\left( {ib} \right)^3} + 3{a^2}\left( {ib} \right) + 3a{\left( {ib} \right)^2} = \overline {a + ib} \\
\Rightarrow {a^3} + {i^3}{b^3} + 3i{a^2}b + 3a\left( {{i^2}} \right)\left( {{b^2}} \right) = \overline {a + ib} \\
\Rightarrow {a^3} + \left( {{i^2}} \right)\left( i \right){b^3} + 3i{a^2}b + 3a\left( {{i^2}} \right)\left( {{b^2}} \right) = \overline {a + ib} \\
\]
Using $
i = \sqrt { - 1} \\
\Rightarrow {i^2} = - 1 \\
$ in the above equation, we get
\[
\Rightarrow {a^3} + \left( { - 1} \right)\left( i \right){b^3} + 3i{a^2}b + 3a\left( { - 1} \right)\left( {{b^2}} \right) = \overline {a + ib} \\
\Rightarrow {a^3} - i{b^3} + 3i{a^2}b - 3a{b^2} = \overline {a + ib} {\text{ }} \to {\text{(3)}} \\
\]
As we know that the conjugate of any complex number $z = a + ib$ is given by
\[\overline z = \overline {a + ib} = a - ib{\text{ }}\]
Using the above formula in equation (3), we get
\[
\Rightarrow {a^3} - i{b^3} + 3i{a^2}b - 3a{b^2} = a - ib \\
\Rightarrow \left( {{a^3} - 3a{b^2}} \right) - i\left( {{b^3} - 3{a^2}b} \right) = a - ib \\
\]
By comparing the real and imaginary parts of the complex numbers given on the LHS and the RHS of the above equation, we get
\[
{a^3} - 3a{b^2} = a \\
\Rightarrow {a^3} - 3a{b^2} - a = 0 \\
\Rightarrow a\left( {{a^2} - 3{b^2} - 1} \right) = 0 \\
\]
Either \[a = 0\] or \[
{a^2} - 3{b^2} - 1 = 0 \\
\Rightarrow {a^2} = 3{b^2} + 1{\text{ }} \to {\text{(4)}} \\
\]
and \[
{b^3} - 3{a^2}b = b \\
\Rightarrow {b^3} - 3{a^2}b - b = 0 \\
\Rightarrow b\left( {{b^2} - 3{a^2} - 1} \right) = 0 \\
\]
Either \[b = 0\] or \[{b^2} - 3{a^2} - 1 = 0{\text{ }} \to {\text{(5)}}\]
By substituting equation (4) in equation (5), we get
\[
\Rightarrow {b^2} - 3\left( {3{b^2} + 1} \right) - 1 = 0 \\
\Rightarrow {b^2} - 9{b^2} - 3 - 1 = 0 \\
\Rightarrow - 8{b^2} - 4 = 0 \\
\Rightarrow 8{b^2} = - 4 \\
\Rightarrow {b^2} = \dfrac{{ - 4}}{8} = \dfrac{{ - 1}}{2} \\
\Rightarrow b = \pm \sqrt {\dfrac{{ - 1}}{2}} = \pm \dfrac{{\sqrt { - 1} }}{{\sqrt 2 }} \\
\Rightarrow b = \pm \dfrac{i}{{\sqrt 2 }} \\
\]
Put \[b = \dfrac{i}{{\sqrt 2 }}\] in equation (4), we get
\[
\Rightarrow {a^2} = 3{\left( {\dfrac{i}{{\sqrt 2 }}} \right)^2} + 1 = 3\left[ {\dfrac{{{i^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}}} \right] + 1 = 3\left[ {\dfrac{{ - 1}}{2}} \right] + 1 = - \dfrac{3}{2} + 1 = \dfrac{{ - 3 + 2}}{2} = - \dfrac{1}{2} \\
\Rightarrow a = \pm \sqrt {\dfrac{{ - 1}}{2}} = \pm \dfrac{{\sqrt { - 1} }}{{\sqrt 2 }} = \pm \dfrac{i}{{\sqrt 2 }} \\
\]
Put \[b = - \dfrac{i}{{\sqrt 2 }}\] in equation (4), we get
\[
\Rightarrow {a^2} = 3{\left( { - \dfrac{i}{{\sqrt 2 }}} \right)^2} + 1 = 3\left[ {\dfrac{{{i^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}}} \right] + 1 = 3\left[ {\dfrac{{ - 1}}{2}} \right] + 1 = - \dfrac{3}{2} + 1 = \dfrac{{ - 3 + 2}}{2} = - \dfrac{1}{2} \\
\Rightarrow a = \pm \sqrt {\dfrac{{ - 1}}{2}} = \pm \dfrac{{\sqrt { - 1} }}{{\sqrt 2 }} = \pm \dfrac{i}{{\sqrt 2 }} \\
\]
Therefore, a = 0, b = 0, a = \[ \pm \dfrac{i}{{\sqrt 2 }}\] and b = \[ \pm \dfrac{i}{{\sqrt 2 }}\]
Corresponding to a = 0 and b = 0, the complex number is $
z = a + ib = 0 + i\left( 0 \right) \\
\Rightarrow z = 0{\text{ }} \to {\text{(5)}} \\
$
Corresponding to a = \[ \pm \dfrac{i}{{\sqrt 2 }}\] and b = \[ \pm \dfrac{i}{{\sqrt 2 }}\], the complex numbers are $z = a + ib = \pm \dfrac{i}{{\sqrt 2 }} + i\left( { \pm \dfrac{i}{{\sqrt 2 }}} \right)$ which includes the following complex numbers
$
z = \dfrac{i}{{\sqrt 2 }} + i\left( {\dfrac{i}{{\sqrt 2 }}} \right) = \dfrac{i}{{\sqrt 2 }} + \dfrac{{{i^2}}}{{\sqrt 2 }} = \dfrac{i}{{\sqrt 2 }} + \dfrac{{ - 1}}{{\sqrt 2 }} \\
\Rightarrow z = \dfrac{{ - 1}}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(6)}} \\
$
or $
z = - \dfrac{i}{{\sqrt 2 }} + i\left( { - \dfrac{i}{{\sqrt 2 }}} \right) = - \dfrac{i}{{\sqrt 2 }} - \dfrac{{{i^2}}}{{\sqrt 2 }} = - \dfrac{i}{{\sqrt 2 }} - \left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right) = - \dfrac{i}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow z = \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(7)}} \\
$
or \[
z = \dfrac{i}{{\sqrt 2 }} + i\left( { - \dfrac{i}{{\sqrt 2 }}} \right) = \dfrac{i}{{\sqrt 2 }} - \dfrac{{{i^2}}}{{\sqrt 2 }} = \dfrac{i}{{\sqrt 2 }} - \left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right) = \dfrac{i}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow z = \dfrac{1}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(8)}} \\
\]
or $
z = - \dfrac{i}{{\sqrt 2 }} + i\left( {\dfrac{i}{{\sqrt 2 }}} \right) = - \dfrac{i}{{\sqrt 2 }} + \dfrac{{{i^2}}}{{\sqrt 2 }} = - \dfrac{i}{{\sqrt 2 }} + \dfrac{{ - 1}}{{\sqrt 2 }} = - \dfrac{i}{{\sqrt 2 }} - \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow z = - \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(9)}} \\
$
Therefore, z = 0, $z = \dfrac{{ - 1}}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}$, $z = \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}$, \[z = \dfrac{1}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}\] and $z = - \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}$ satisfies the equation ${z^3} = \overline z $ which means there are total 5 complex numbers satisfying the given equation.
Hence, option D is correct.
Note- In this particular problem, we have compared two complex numbers which are equated together i.e., $a + ib = c + id$ this gives that both the real part and the imaginary part of the complex numbers given on the LHS and the RHS of the equation $a + ib = c + id$ will always be equal i.e., a = c and b = d.
Complete Step-by-Step solution:
Let us suppose that any complex number $z = a + ib$ satisfies the equation ${z^3} = \overline z {\text{ }} \to (1{\text{)}}$
By putting $z = a + ib$ in equation (1), we get
${\left( {a + ib} \right)^3} = \overline {a + ib} {\text{ }} \to {\text{(2)}}$
Using the formula ${\left( {x + y} \right)^3} = {x^3} + {y^3} + 3{x^2}y + 3x{y^2}$ in the equation (2), we have
\[
\Rightarrow {a^3} + {\left( {ib} \right)^3} + 3{a^2}\left( {ib} \right) + 3a{\left( {ib} \right)^2} = \overline {a + ib} \\
\Rightarrow {a^3} + {i^3}{b^3} + 3i{a^2}b + 3a\left( {{i^2}} \right)\left( {{b^2}} \right) = \overline {a + ib} \\
\Rightarrow {a^3} + \left( {{i^2}} \right)\left( i \right){b^3} + 3i{a^2}b + 3a\left( {{i^2}} \right)\left( {{b^2}} \right) = \overline {a + ib} \\
\]
Using $
i = \sqrt { - 1} \\
\Rightarrow {i^2} = - 1 \\
$ in the above equation, we get
\[
\Rightarrow {a^3} + \left( { - 1} \right)\left( i \right){b^3} + 3i{a^2}b + 3a\left( { - 1} \right)\left( {{b^2}} \right) = \overline {a + ib} \\
\Rightarrow {a^3} - i{b^3} + 3i{a^2}b - 3a{b^2} = \overline {a + ib} {\text{ }} \to {\text{(3)}} \\
\]
As we know that the conjugate of any complex number $z = a + ib$ is given by
\[\overline z = \overline {a + ib} = a - ib{\text{ }}\]
Using the above formula in equation (3), we get
\[
\Rightarrow {a^3} - i{b^3} + 3i{a^2}b - 3a{b^2} = a - ib \\
\Rightarrow \left( {{a^3} - 3a{b^2}} \right) - i\left( {{b^3} - 3{a^2}b} \right) = a - ib \\
\]
By comparing the real and imaginary parts of the complex numbers given on the LHS and the RHS of the above equation, we get
\[
{a^3} - 3a{b^2} = a \\
\Rightarrow {a^3} - 3a{b^2} - a = 0 \\
\Rightarrow a\left( {{a^2} - 3{b^2} - 1} \right) = 0 \\
\]
Either \[a = 0\] or \[
{a^2} - 3{b^2} - 1 = 0 \\
\Rightarrow {a^2} = 3{b^2} + 1{\text{ }} \to {\text{(4)}} \\
\]
and \[
{b^3} - 3{a^2}b = b \\
\Rightarrow {b^3} - 3{a^2}b - b = 0 \\
\Rightarrow b\left( {{b^2} - 3{a^2} - 1} \right) = 0 \\
\]
Either \[b = 0\] or \[{b^2} - 3{a^2} - 1 = 0{\text{ }} \to {\text{(5)}}\]
By substituting equation (4) in equation (5), we get
\[
\Rightarrow {b^2} - 3\left( {3{b^2} + 1} \right) - 1 = 0 \\
\Rightarrow {b^2} - 9{b^2} - 3 - 1 = 0 \\
\Rightarrow - 8{b^2} - 4 = 0 \\
\Rightarrow 8{b^2} = - 4 \\
\Rightarrow {b^2} = \dfrac{{ - 4}}{8} = \dfrac{{ - 1}}{2} \\
\Rightarrow b = \pm \sqrt {\dfrac{{ - 1}}{2}} = \pm \dfrac{{\sqrt { - 1} }}{{\sqrt 2 }} \\
\Rightarrow b = \pm \dfrac{i}{{\sqrt 2 }} \\
\]
Put \[b = \dfrac{i}{{\sqrt 2 }}\] in equation (4), we get
\[
\Rightarrow {a^2} = 3{\left( {\dfrac{i}{{\sqrt 2 }}} \right)^2} + 1 = 3\left[ {\dfrac{{{i^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}}} \right] + 1 = 3\left[ {\dfrac{{ - 1}}{2}} \right] + 1 = - \dfrac{3}{2} + 1 = \dfrac{{ - 3 + 2}}{2} = - \dfrac{1}{2} \\
\Rightarrow a = \pm \sqrt {\dfrac{{ - 1}}{2}} = \pm \dfrac{{\sqrt { - 1} }}{{\sqrt 2 }} = \pm \dfrac{i}{{\sqrt 2 }} \\
\]
Put \[b = - \dfrac{i}{{\sqrt 2 }}\] in equation (4), we get
\[
\Rightarrow {a^2} = 3{\left( { - \dfrac{i}{{\sqrt 2 }}} \right)^2} + 1 = 3\left[ {\dfrac{{{i^2}}}{{{{\left( {\sqrt 2 } \right)}^2}}}} \right] + 1 = 3\left[ {\dfrac{{ - 1}}{2}} \right] + 1 = - \dfrac{3}{2} + 1 = \dfrac{{ - 3 + 2}}{2} = - \dfrac{1}{2} \\
\Rightarrow a = \pm \sqrt {\dfrac{{ - 1}}{2}} = \pm \dfrac{{\sqrt { - 1} }}{{\sqrt 2 }} = \pm \dfrac{i}{{\sqrt 2 }} \\
\]
Therefore, a = 0, b = 0, a = \[ \pm \dfrac{i}{{\sqrt 2 }}\] and b = \[ \pm \dfrac{i}{{\sqrt 2 }}\]
Corresponding to a = 0 and b = 0, the complex number is $
z = a + ib = 0 + i\left( 0 \right) \\
\Rightarrow z = 0{\text{ }} \to {\text{(5)}} \\
$
Corresponding to a = \[ \pm \dfrac{i}{{\sqrt 2 }}\] and b = \[ \pm \dfrac{i}{{\sqrt 2 }}\], the complex numbers are $z = a + ib = \pm \dfrac{i}{{\sqrt 2 }} + i\left( { \pm \dfrac{i}{{\sqrt 2 }}} \right)$ which includes the following complex numbers
$
z = \dfrac{i}{{\sqrt 2 }} + i\left( {\dfrac{i}{{\sqrt 2 }}} \right) = \dfrac{i}{{\sqrt 2 }} + \dfrac{{{i^2}}}{{\sqrt 2 }} = \dfrac{i}{{\sqrt 2 }} + \dfrac{{ - 1}}{{\sqrt 2 }} \\
\Rightarrow z = \dfrac{{ - 1}}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(6)}} \\
$
or $
z = - \dfrac{i}{{\sqrt 2 }} + i\left( { - \dfrac{i}{{\sqrt 2 }}} \right) = - \dfrac{i}{{\sqrt 2 }} - \dfrac{{{i^2}}}{{\sqrt 2 }} = - \dfrac{i}{{\sqrt 2 }} - \left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right) = - \dfrac{i}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow z = \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(7)}} \\
$
or \[
z = \dfrac{i}{{\sqrt 2 }} + i\left( { - \dfrac{i}{{\sqrt 2 }}} \right) = \dfrac{i}{{\sqrt 2 }} - \dfrac{{{i^2}}}{{\sqrt 2 }} = \dfrac{i}{{\sqrt 2 }} - \left( {\dfrac{{ - 1}}{{\sqrt 2 }}} \right) = \dfrac{i}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow z = \dfrac{1}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(8)}} \\
\]
or $
z = - \dfrac{i}{{\sqrt 2 }} + i\left( {\dfrac{i}{{\sqrt 2 }}} \right) = - \dfrac{i}{{\sqrt 2 }} + \dfrac{{{i^2}}}{{\sqrt 2 }} = - \dfrac{i}{{\sqrt 2 }} + \dfrac{{ - 1}}{{\sqrt 2 }} = - \dfrac{i}{{\sqrt 2 }} - \dfrac{1}{{\sqrt 2 }} \\
\Rightarrow z = - \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}{\text{ }} \to {\text{(9)}} \\
$
Therefore, z = 0, $z = \dfrac{{ - 1}}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}$, $z = \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}$, \[z = \dfrac{1}{{\sqrt 2 }} + \dfrac{i}{{\sqrt 2 }}\] and $z = - \dfrac{1}{{\sqrt 2 }} - \dfrac{i}{{\sqrt 2 }}$ satisfies the equation ${z^3} = \overline z $ which means there are total 5 complex numbers satisfying the given equation.
Hence, option D is correct.
Note- In this particular problem, we have compared two complex numbers which are equated together i.e., $a + ib = c + id$ this gives that both the real part and the imaginary part of the complex numbers given on the LHS and the RHS of the equation $a + ib = c + id$ will always be equal i.e., a = c and b = d.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

