
What needs to be done for calculating mean for a continuous series?
A.Mid-points of various class intervals are taken
B.Lower class limits are taken
C.Upper class limits are taken
D.A or B or C
Answer
579.9k+ views
Hint: First we will use the method to calculate the mean for a continuous series, where frequencies are given along with the value of the variable in the form of class intervals and the meaning of mean.
Complete step-by-step answer:
We are given the mean for a continuous series.
We know that the Arithmetic Mean is the average of the numbers, a calculated central value of a set of numbers.
So to calculate it, we have to add up all the numbers and then we will divide by how many numbers there are.
Also we know that for continuous series mean, where the frequencies are given along with the value of the variable in the form of class intervals.
For example, if the class is like 30-50 then before calculating the mean mid point that is 40 is calculated for the whole series which is added and divided by the number of terms in order to ascertain the mean.
We know that to calculate the mean of a continuous series, we have to find the midpoints of the various class intervals.
But when the class intervals are not continuous, we will make them continuous by taking the upper limit of first class and lower limit of second class.
Therefore, the required value is mid-point of various class intervals for a continuous series.
Hence, option A is correct.
Note: We know that an arithmetic mean or simply mean of a list of numbers, is the sum of all of the numbers divided by the amount of numbers. We need to know that the class midpoint is equal to the average of the upper class limit and the lower class limit. It is known that by adding the values of upper and lower limits and dividing the total by 2.
Complete step-by-step answer:
We are given the mean for a continuous series.
We know that the Arithmetic Mean is the average of the numbers, a calculated central value of a set of numbers.
So to calculate it, we have to add up all the numbers and then we will divide by how many numbers there are.
Also we know that for continuous series mean, where the frequencies are given along with the value of the variable in the form of class intervals.
For example, if the class is like 30-50 then before calculating the mean mid point that is 40 is calculated for the whole series which is added and divided by the number of terms in order to ascertain the mean.
We know that to calculate the mean of a continuous series, we have to find the midpoints of the various class intervals.
But when the class intervals are not continuous, we will make them continuous by taking the upper limit of first class and lower limit of second class.
Therefore, the required value is mid-point of various class intervals for a continuous series.
Hence, option A is correct.
Note: We know that an arithmetic mean or simply mean of a list of numbers, is the sum of all of the numbers divided by the amount of numbers. We need to know that the class midpoint is equal to the average of the upper class limit and the lower class limit. It is known that by adding the values of upper and lower limits and dividing the total by 2.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

