Answer
Verified
444.3k+ views
Hint:Imagine a disc of radius R with a small area dm and integrate them. Here, we need to consider an imaginary ring inside the disc and then integrate it for the whole ring. The diameter is given as “I” so the radius will be half of “I”.
Complete step by step solution:
Calculate the moment of inertia of the above circular disc:
$\int {dI} = \int {dM\dfrac{R}{2}} dR$
\[ \Rightarrow \int {dI} = \dfrac{1}{2}\int {dM} RdR\]
Now, solve the integration:
\[ \Rightarrow I = \dfrac{1}{2} \times \dfrac{{{R^2}}}{2} \times M\]
\[ \Rightarrow I = \dfrac{{M{R^2}}}{4}\]
Now, the above moment of inertia is for the disc, then moment of inertia for the ring:
Here, for the ring the moment of inertia of radius R would remain constant:
$\int {dI' = \int {dM{R^2}} } $
Take the constant out:
$ \Rightarrow \int {dI' = {R^2}\int {dM} } $
\[ \Rightarrow I' = M{R^2}\]
Now, divide the moment of inertia for the disc by the ring:
\[ \Rightarrow \dfrac{I}{{I'}} = \dfrac{{\dfrac{{M{R^2}}}{4}}}{{M{R^2}}}\]
\[ \Rightarrow \dfrac{I}{{I'}} = \dfrac{{M{R^2}}}{{4 \times M{R^2}}}\]
Now, do the needed calculation:
\[ \Rightarrow \dfrac{I}{{I'}} = \dfrac{1}{4}\]
\[ \Rightarrow 4I = I'\]
Final Answer:Option “3” is correct. Therefore, the moment of inertia of a circular ring of mass M, radius R about an axis perpendicular to its plane and passing through its centre is 4I.
Note:Here, we need to first derive the moment of inertia of the disc which is passing through the diameter and then derive the moment of inertia of the ring and after that we need to compare both the moment of inertia and find the relation between the two moment of inertia.
Complete step by step solution:
Calculate the moment of inertia of the above circular disc:
$\int {dI} = \int {dM\dfrac{R}{2}} dR$
\[ \Rightarrow \int {dI} = \dfrac{1}{2}\int {dM} RdR\]
Now, solve the integration:
\[ \Rightarrow I = \dfrac{1}{2} \times \dfrac{{{R^2}}}{2} \times M\]
\[ \Rightarrow I = \dfrac{{M{R^2}}}{4}\]
Now, the above moment of inertia is for the disc, then moment of inertia for the ring:
Here, for the ring the moment of inertia of radius R would remain constant:
$\int {dI' = \int {dM{R^2}} } $
Take the constant out:
$ \Rightarrow \int {dI' = {R^2}\int {dM} } $
\[ \Rightarrow I' = M{R^2}\]
Now, divide the moment of inertia for the disc by the ring:
\[ \Rightarrow \dfrac{I}{{I'}} = \dfrac{{\dfrac{{M{R^2}}}{4}}}{{M{R^2}}}\]
\[ \Rightarrow \dfrac{I}{{I'}} = \dfrac{{M{R^2}}}{{4 \times M{R^2}}}\]
Now, do the needed calculation:
\[ \Rightarrow \dfrac{I}{{I'}} = \dfrac{1}{4}\]
\[ \Rightarrow 4I = I'\]
Final Answer:Option “3” is correct. Therefore, the moment of inertia of a circular ring of mass M, radius R about an axis perpendicular to its plane and passing through its centre is 4I.
Note:Here, we need to first derive the moment of inertia of the disc which is passing through the diameter and then derive the moment of inertia of the ring and after that we need to compare both the moment of inertia and find the relation between the two moment of inertia.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE