
$\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 - \cos 2x)}^2}}}{{2x\tan x - x\tan 2x}}$
A) $2$
B) $ - \dfrac{1}{2}$
C) $ - 2$
D) $\dfrac{1}{2}$
Answer
511.8k+ views
Hint:In this question in numerator use, $\cos 2x = 1 - 2{\sin ^2}x$ , Afterwards multiple and divide by ${x^3}$ and we know that $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ while in denominator use the expansion of $\tan x$ and simplify it to get required answer.
Complete step-by-step answer:
As in the given question $\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 - \cos 2x)}^2}}}{{2x\tan x - x\tan 2x}}$ first in the numerator
Use the formula $\cos 2x = 1 - 2{\sin ^2}x$
Hence
$\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 - 1 + 2{{\sin }^2}x)}^2}}}{{2x\tan x - x\tan 2x}}$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{4{{\sin }^4}x}}{{x(2\tan x - \tan 2x)}}$
Now multiple and divide by ${x^3}$ than use the property $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{4{{\sin }^4}x \times {x^3}}}{{{x^4}(2\tan x - \tan 2x)}}$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{(2\tan x - \tan 2x)}}{\left( {\dfrac{{\sin x}}{x}} \right)^4}$
As from above $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$
Then $\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{(2\tan x - \tan 2x)}}$
Now for the denominator we have to use the expansion of $\tan x$
We know that the expansion of $\tan x = x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}}..........$
Similarly $\tan 2x = 2x + \dfrac{{{{(2x)}^3}}}{3} + \dfrac{{2{{(2x)}^5}}}{{15}}..........$
Now by putting these values in the above equation
$\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{\left\{ {2\left( {x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}}..........} \right) - \left( {2x + \dfrac{{{{(2x)}^3}}}{3} + \dfrac{{2{{(2x)}^5}}}{{15}}..........} \right)} \right\}}}$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{\left( {2x + \dfrac{{2{x^3}}}{3} + \dfrac{{4{x^5}}}{{15}}.......... - 2x - \dfrac{{{{(2x)}^3}}}{3} - \dfrac{{2{{(2x)}^5}}}{{15}}........} \right)}}$
On dividing by ${x^3}$ on denominator and numerator
$\mathop {\lim }\limits_{x \to 0} \dfrac{4}{{\left( {\dfrac{2}{3} + \dfrac{{4{x^2}}}{{15}}.......... - \dfrac{8}{3} - \dfrac{{2{{(2)}^5}{x^2}}}{{15}}........} \right)}}$
By applying $\mathop {\lim }\limits_{x \to 0} $ , Now all the term containing x will equal to $0$
$\dfrac{4}{{\left( {\dfrac{2}{3} - \dfrac{8}{3}} \right)}}$
$\dfrac{4}{{ - 2}}$
That is equal to $ - 2$.
So, the correct answer is “Option C”.
Note:Whenever the trigonometric functions are not solved further in limit problems apply the expansion of the trigonometric function then it will solve easily without taking much time .Always expand the limit the power of x in the numerator is equal or greater to the power of the denominator otherwise the question will not proceed to the answer .
Complete step-by-step answer:
As in the given question $\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 - \cos 2x)}^2}}}{{2x\tan x - x\tan 2x}}$ first in the numerator
Use the formula $\cos 2x = 1 - 2{\sin ^2}x$
Hence
$\mathop {\lim }\limits_{x \to 0} \dfrac{{{{(1 - 1 + 2{{\sin }^2}x)}^2}}}{{2x\tan x - x\tan 2x}}$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{4{{\sin }^4}x}}{{x(2\tan x - \tan 2x)}}$
Now multiple and divide by ${x^3}$ than use the property $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{4{{\sin }^4}x \times {x^3}}}{{{x^4}(2\tan x - \tan 2x)}}$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{(2\tan x - \tan 2x)}}{\left( {\dfrac{{\sin x}}{x}} \right)^4}$
As from above $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$
Then $\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{(2\tan x - \tan 2x)}}$
Now for the denominator we have to use the expansion of $\tan x$
We know that the expansion of $\tan x = x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}}..........$
Similarly $\tan 2x = 2x + \dfrac{{{{(2x)}^3}}}{3} + \dfrac{{2{{(2x)}^5}}}{{15}}..........$
Now by putting these values in the above equation
$\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{\left\{ {2\left( {x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}}..........} \right) - \left( {2x + \dfrac{{{{(2x)}^3}}}{3} + \dfrac{{2{{(2x)}^5}}}{{15}}..........} \right)} \right\}}}$
$\mathop {\lim }\limits_{x \to 0} \dfrac{{4{x^3}}}{{\left( {2x + \dfrac{{2{x^3}}}{3} + \dfrac{{4{x^5}}}{{15}}.......... - 2x - \dfrac{{{{(2x)}^3}}}{3} - \dfrac{{2{{(2x)}^5}}}{{15}}........} \right)}}$
On dividing by ${x^3}$ on denominator and numerator
$\mathop {\lim }\limits_{x \to 0} \dfrac{4}{{\left( {\dfrac{2}{3} + \dfrac{{4{x^2}}}{{15}}.......... - \dfrac{8}{3} - \dfrac{{2{{(2)}^5}{x^2}}}{{15}}........} \right)}}$
By applying $\mathop {\lim }\limits_{x \to 0} $ , Now all the term containing x will equal to $0$
$\dfrac{4}{{\left( {\dfrac{2}{3} - \dfrac{8}{3}} \right)}}$
$\dfrac{4}{{ - 2}}$
That is equal to $ - 2$.
So, the correct answer is “Option C”.
Note:Whenever the trigonometric functions are not solved further in limit problems apply the expansion of the trigonometric function then it will solve easily without taking much time .Always expand the limit the power of x in the numerator is equal or greater to the power of the denominator otherwise the question will not proceed to the answer .
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the technique used to separate the components class 11 chemistry CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
