
Loschmidt number is equal to:
$(a)$ Molecules present in 2ml of gas at STP
$(b){\text{ 2}}{\text{.69}} \times {\text{1}}{{\text{0}}^{19}}$ Molecules of gas
$(c){\text{ 4}}{\text{.46}} \times {10^{ - 5}}$Mole of gas
$(d)$ Both B and C
Answer
599.4k+ views
Hint – In this question use the concept that Loschmidt number is simply a constant that defines a unit of number density for substances mainly gases. Use the basic definition of Loschmidt distance to get the right option.
Complete answer:
Being a measure of number density, the Loschmidt constant is used to define the amagat, a practical unit of number density for gases and other substances:
Now the Loschmidt constant is exactly 1 amagat.
And 1 amagat = n0 = \[2.6867811 \times {10^{25}}\;{m^{ - 3}}\].
Which is approximately equal to \[2.69 \times {10^{25}}\;{m^{ - 3}}\]
Loschmidt number: The number of molecules in one cubic centimeter of an ideal gas at standard temperature and pressure is equal to $2.69 \times {10^{19}}$ molecules of gas or $4.46 \times {10^{ - 5}}$ mole of gas.
As we know that Avogadro number = $6.023 \times {10^{23}}$
So Loschmidt number = $\dfrac{{{\text{molecules of gas}}}}{{{\text{Avagadro number}}}} = \dfrac{{2.69 \times {{10}^{19}}}}{{6.023 \times {{10}^{23}}}} = 4.46 \times {10^{ - 5}}{\text{ mole of gas}}$.
So this is the required answer.
Hence option (D) is the correct answer.
Note – It is required to have a good understanding of Avogadro's number, it is a proportion that relates molar mass on an atomic scale to physical mass on human scale or in other words it is the number of elementary particles that can be molecules, atoms or compounds per mole of a substance.
Complete answer:
Being a measure of number density, the Loschmidt constant is used to define the amagat, a practical unit of number density for gases and other substances:
Now the Loschmidt constant is exactly 1 amagat.
And 1 amagat = n0 = \[2.6867811 \times {10^{25}}\;{m^{ - 3}}\].
Which is approximately equal to \[2.69 \times {10^{25}}\;{m^{ - 3}}\]
Loschmidt number: The number of molecules in one cubic centimeter of an ideal gas at standard temperature and pressure is equal to $2.69 \times {10^{19}}$ molecules of gas or $4.46 \times {10^{ - 5}}$ mole of gas.
As we know that Avogadro number = $6.023 \times {10^{23}}$
So Loschmidt number = $\dfrac{{{\text{molecules of gas}}}}{{{\text{Avagadro number}}}} = \dfrac{{2.69 \times {{10}^{19}}}}{{6.023 \times {{10}^{23}}}} = 4.46 \times {10^{ - 5}}{\text{ mole of gas}}$.
So this is the required answer.
Hence option (D) is the correct answer.
Note – It is required to have a good understanding of Avogadro's number, it is a proportion that relates molar mass on an atomic scale to physical mass on human scale or in other words it is the number of elementary particles that can be molecules, atoms or compounds per mole of a substance.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

