
Line x = y touches a circle at point (1, 1). If the circle also passes through the point
(1, -3) then find its radius.
\[\begin{align}
& a)3\sqrt{2} \\
& b)3 \\
& c)2\sqrt{2} \\
& d)2 \\
\end{align}\]
Answer
570k+ views
Hint: Now we know that the equation of circle passing touching the line L = 0 at point $\left( {{x}_{1}},{{y}_{1}} \right)$ is given by ${{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}+\lambda L=0$ hence we can write equation of circle in terms of $\lambda $ passing touching line x = y at point (1, 1). Now we know the circle passes through point (1, -3). Hence we will substitute the point in the equation to find the value of $\lambda $ . Now we have the equation of circle. We can easily find the radius of this circle.
Complete step by step answer:
We have that the line x = y touches the circle at point (1, 1).
We can write the equation x = y as x – y =0.
Now we know that the equation of circle passing touching the line L = 0 at point $\left( {{x}_{1}},{{y}_{1}} \right)$ is nothing but ${{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}+\lambda L=0$.
Hence the equation of circle touching the line x – y = 0 at point (1, 1) is
${{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+\lambda \left( x-y \right)=0...................\left( 1 \right)$
Now we are given that the point (1, -3) lies on the circle.
Hence the point will satisfy the equation of circle. Now substituting x = 1 and y = - 3 in equation (1) we get.
$\begin{align}
& {{\left( 1-1 \right)}^{2}}+{{\left( -3-1 \right)}^{2}}+\lambda \left( 1-\left( -3 \right) \right)=0 \\
& \Rightarrow {{\left( -4 \right)}^{2}}+\lambda \left( 1+3 \right)=0 \\
& \Rightarrow 16+4\lambda =0 \\
& \Rightarrow 4\lambda =-16 \\
\end{align}$
Dividing the equation by 4 we get $\lambda =-4$
Now substituting this value in equation (1) we get
${{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}-4\left( x-y \right)=0$
Now we know that ${{\left( a\pm b \right)}^{2}}={{a}^{2}}+{{b}^{2}}\pm 2ab$
Hence we get
$\begin{align}
& \left( {{x}^{2}}+1-2x \right)+\left( {{y}^{2}}+1-2y \right)-4x+4y=0 \\
& \Rightarrow {{x}^{2}}-2x-4x+{{y}^{2}}-2y+4y+1+1=0 \\
& \Rightarrow {{x}^{2}}-6x+{{y}^{2}}+2y+2=0 \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-6x+2y+2=0 \\
\end{align}$
Now in the equation adding and subtracting 9 we get
\[\begin{align}
& {{x}^{2}}-6x+9+{{y}^{2}}+2y+1+1-9=0 \\
& \Rightarrow {{x}^{2}}-2\left( 3x \right)+{{\left( 3 \right)}^{2}}+{{y}^{2}}+2y+1=8 \\
\end{align}\]
Now again using the formula ${{\left( a\pm b \right)}^{2}}={{a}^{2}}+{{b}^{2}}\pm 2ab$ we get
${{\left( x-3 \right)}^{2}}+{{\left( y+1 \right)}^{2}}=8$
Now the above equation is in the form \[{{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}={{r}^{2}}\]
And the equation \[{{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}={{r}^{2}}\] is nothing but equation of circle with center $\left( {{x}_{1}},{{y}_{1}} \right)$ and radius r
Hence we get the radius of ${{\left( x-3 \right)}^{2}}+{{\left( y+1 \right)}^{2}}=8$ is $\sqrt{8}$
Now we know that $\sqrt{8}=\sqrt{4\times 2}=2\sqrt{2}$ .
Hence the radius of the circle is $2\sqrt{2}$ units.
Option c is the correct option.
Note:
Now while using the equation ${{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}+\lambda L=0$ note that L should be of the form L = 0. If our line is not in this form then first write it in this form. Also we can find the radius directly as the radius of circle ${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$is given by $\sqrt{{{g}^{2}}+{{f}^{2}}-c}$.
Complete step by step answer:
We have that the line x = y touches the circle at point (1, 1).
We can write the equation x = y as x – y =0.
Now we know that the equation of circle passing touching the line L = 0 at point $\left( {{x}_{1}},{{y}_{1}} \right)$ is nothing but ${{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}+\lambda L=0$.
Hence the equation of circle touching the line x – y = 0 at point (1, 1) is
${{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+\lambda \left( x-y \right)=0...................\left( 1 \right)$
Now we are given that the point (1, -3) lies on the circle.
Hence the point will satisfy the equation of circle. Now substituting x = 1 and y = - 3 in equation (1) we get.
$\begin{align}
& {{\left( 1-1 \right)}^{2}}+{{\left( -3-1 \right)}^{2}}+\lambda \left( 1-\left( -3 \right) \right)=0 \\
& \Rightarrow {{\left( -4 \right)}^{2}}+\lambda \left( 1+3 \right)=0 \\
& \Rightarrow 16+4\lambda =0 \\
& \Rightarrow 4\lambda =-16 \\
\end{align}$
Dividing the equation by 4 we get $\lambda =-4$
Now substituting this value in equation (1) we get
${{\left( x-1 \right)}^{2}}+{{\left( y-1 \right)}^{2}}-4\left( x-y \right)=0$
Now we know that ${{\left( a\pm b \right)}^{2}}={{a}^{2}}+{{b}^{2}}\pm 2ab$
Hence we get
$\begin{align}
& \left( {{x}^{2}}+1-2x \right)+\left( {{y}^{2}}+1-2y \right)-4x+4y=0 \\
& \Rightarrow {{x}^{2}}-2x-4x+{{y}^{2}}-2y+4y+1+1=0 \\
& \Rightarrow {{x}^{2}}-6x+{{y}^{2}}+2y+2=0 \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-6x+2y+2=0 \\
\end{align}$
Now in the equation adding and subtracting 9 we get
\[\begin{align}
& {{x}^{2}}-6x+9+{{y}^{2}}+2y+1+1-9=0 \\
& \Rightarrow {{x}^{2}}-2\left( 3x \right)+{{\left( 3 \right)}^{2}}+{{y}^{2}}+2y+1=8 \\
\end{align}\]
Now again using the formula ${{\left( a\pm b \right)}^{2}}={{a}^{2}}+{{b}^{2}}\pm 2ab$ we get
${{\left( x-3 \right)}^{2}}+{{\left( y+1 \right)}^{2}}=8$
Now the above equation is in the form \[{{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}={{r}^{2}}\]
And the equation \[{{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}={{r}^{2}}\] is nothing but equation of circle with center $\left( {{x}_{1}},{{y}_{1}} \right)$ and radius r
Hence we get the radius of ${{\left( x-3 \right)}^{2}}+{{\left( y+1 \right)}^{2}}=8$ is $\sqrt{8}$
Now we know that $\sqrt{8}=\sqrt{4\times 2}=2\sqrt{2}$ .
Hence the radius of the circle is $2\sqrt{2}$ units.
Option c is the correct option.
Note:
Now while using the equation ${{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}+\lambda L=0$ note that L should be of the form L = 0. If our line is not in this form then first write it in this form. Also we can find the radius directly as the radius of circle ${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$is given by $\sqrt{{{g}^{2}}+{{f}^{2}}-c}$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

