
Let\[A\] be a square matrix of order \[3\times 3\]. If \[\left| A \right|=4\] then find the value of \[\left| 2A \right|\].
Answer
577.8k+ views
Hint: In this question, We are given with a square matrix \[A\] of order \[3\times 3\]. Also we are given that \[\left| A \right|=4\]. The determinant of the matrix \[A\] is equal to 4. Now we will use the fact that if \[A\]is square matrix of order \[m\times m\]and the determinant of the matrix \[A\] is equals to \[x\], then for any scalar \[c\] the determinant of the matrix \[cA\] is given by \[{{c}^{m}}\left| A \right|\].
Complete step by step answer:
We are given a square matrix \[A\] of order \[3\times 3\].
Then the matrix \[A\] is of the form
\[A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)\]
Now we are also given that the determinant of the matrix \[A\] is equal to 4.
Hence we have
\[\begin{align}
& \left| A \right|=\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& =4......(1)
\end{align}\]
We will now calculate the matrix \[cA\] when \[c=2\].
That is we will multiply matrix \[A\] with 2 and find the matrix \[2A\] by multiplying each term of the matrix \[A\] with 2.
Then we will get
\[\begin{align}
& 2A=2\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right) \\
& =\left( \begin{matrix}
2{{a}_{11}} & 2{{a}_{12}} & 2{{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right)
\end{align}\]
Now using the fact that for a matrix \[A\] such that determinant of the matrix \[A\] is equals to \[x\], if a row is multiplied by a scalar \[\lambda \], then the determinant of the resultant matrix becomes \[\lambda x\].
In this case we have \[2A=\left( \begin{matrix}
2{{a}_{11}} & 2{{a}_{12}} & 2{{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right)\]. That is each row of the matrix \[A\] is multiplied by 2.
Hence we will calculate the determinant of the matrix \[2A\] using the above stated property of determinants of matrices.
We will then get,
\[\begin{align}
& \left| 2A \right|=\left| \begin{matrix}
2{{a}_{11}} & 2{{a}_{12}} & 2{{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right| \\
& =2\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right| \\
& =\left( 2\times 2 \right)\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right| \\
& =\left( 2\times 2\times 2 \right)\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& =8\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|
\end{align}\]
Now on substituting the value in equation (1) in the above equation, we get
\[\begin{align}
& \left| 2A \right|=8\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& =8\left| A \right| \\
& =8\times 4 \\
& =32
\end{align}\]
Therefore we get that the value of \[\left| 2A \right|\] is equal to 32.
Note:
In this problem, we can also determine the value of \[\left| 2A \right|\] using the property of determinant of matrix that if the determinant of the matrix \[A\] is equals to \[x\], then for any scalar \[c\] the determinant of the matrix \[cA\] is given by \[{{c}^{m}}\left| A \right|\].
Complete step by step answer:
We are given a square matrix \[A\] of order \[3\times 3\].
Then the matrix \[A\] is of the form
\[A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)\]
Now we are also given that the determinant of the matrix \[A\] is equal to 4.
Hence we have
\[\begin{align}
& \left| A \right|=\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& =4......(1)
\end{align}\]
We will now calculate the matrix \[cA\] when \[c=2\].
That is we will multiply matrix \[A\] with 2 and find the matrix \[2A\] by multiplying each term of the matrix \[A\] with 2.
Then we will get
\[\begin{align}
& 2A=2\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right) \\
& =\left( \begin{matrix}
2{{a}_{11}} & 2{{a}_{12}} & 2{{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right)
\end{align}\]
Now using the fact that for a matrix \[A\] such that determinant of the matrix \[A\] is equals to \[x\], if a row is multiplied by a scalar \[\lambda \], then the determinant of the resultant matrix becomes \[\lambda x\].
In this case we have \[2A=\left( \begin{matrix}
2{{a}_{11}} & 2{{a}_{12}} & 2{{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right)\]. That is each row of the matrix \[A\] is multiplied by 2.
Hence we will calculate the determinant of the matrix \[2A\] using the above stated property of determinants of matrices.
We will then get,
\[\begin{align}
& \left| 2A \right|=\left| \begin{matrix}
2{{a}_{11}} & 2{{a}_{12}} & 2{{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right| \\
& =2\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right| \\
& =\left( 2\times 2 \right)\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right| \\
& =\left( 2\times 2\times 2 \right)\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& =8\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|
\end{align}\]
Now on substituting the value in equation (1) in the above equation, we get
\[\begin{align}
& \left| 2A \right|=8\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& =8\left| A \right| \\
& =8\times 4 \\
& =32
\end{align}\]
Therefore we get that the value of \[\left| 2A \right|\] is equal to 32.
Note:
In this problem, we can also determine the value of \[\left| 2A \right|\] using the property of determinant of matrix that if the determinant of the matrix \[A\] is equals to \[x\], then for any scalar \[c\] the determinant of the matrix \[cA\] is given by \[{{c}^{m}}\left| A \right|\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

