
Let\[A\] be a square matrix of order \[3\times 3\]. If \[\left| A \right|=4\] then find the value of \[\left| 2A \right|\].
Answer
513.3k+ views
Hint: In this question, We are given with a square matrix \[A\] of order \[3\times 3\]. Also we are given that \[\left| A \right|=4\]. The determinant of the matrix \[A\] is equal to 4. Now we will use the fact that if \[A\]is square matrix of order \[m\times m\]and the determinant of the matrix \[A\] is equals to \[x\], then for any scalar \[c\] the determinant of the matrix \[cA\] is given by \[{{c}^{m}}\left| A \right|\].
Complete step by step answer:
We are given a square matrix \[A\] of order \[3\times 3\].
Then the matrix \[A\] is of the form
\[A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)\]
Now we are also given that the determinant of the matrix \[A\] is equal to 4.
Hence we have
\[\begin{align}
& \left| A \right|=\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& =4......(1)
\end{align}\]
We will now calculate the matrix \[cA\] when \[c=2\].
That is we will multiply matrix \[A\] with 2 and find the matrix \[2A\] by multiplying each term of the matrix \[A\] with 2.
Then we will get
\[\begin{align}
& 2A=2\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right) \\
& =\left( \begin{matrix}
2{{a}_{11}} & 2{{a}_{12}} & 2{{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right)
\end{align}\]
Now using the fact that for a matrix \[A\] such that determinant of the matrix \[A\] is equals to \[x\], if a row is multiplied by a scalar \[\lambda \], then the determinant of the resultant matrix becomes \[\lambda x\].
In this case we have \[2A=\left( \begin{matrix}
2{{a}_{11}} & 2{{a}_{12}} & 2{{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right)\]. That is each row of the matrix \[A\] is multiplied by 2.
Hence we will calculate the determinant of the matrix \[2A\] using the above stated property of determinants of matrices.
We will then get,
\[\begin{align}
& \left| 2A \right|=\left| \begin{matrix}
2{{a}_{11}} & 2{{a}_{12}} & 2{{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right| \\
& =2\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right| \\
& =\left( 2\times 2 \right)\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right| \\
& =\left( 2\times 2\times 2 \right)\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& =8\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|
\end{align}\]
Now on substituting the value in equation (1) in the above equation, we get
\[\begin{align}
& \left| 2A \right|=8\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& =8\left| A \right| \\
& =8\times 4 \\
& =32
\end{align}\]
Therefore we get that the value of \[\left| 2A \right|\] is equal to 32.
Note:
In this problem, we can also determine the value of \[\left| 2A \right|\] using the property of determinant of matrix that if the determinant of the matrix \[A\] is equals to \[x\], then for any scalar \[c\] the determinant of the matrix \[cA\] is given by \[{{c}^{m}}\left| A \right|\].
Complete step by step answer:
We are given a square matrix \[A\] of order \[3\times 3\].
Then the matrix \[A\] is of the form
\[A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)\]
Now we are also given that the determinant of the matrix \[A\] is equal to 4.
Hence we have
\[\begin{align}
& \left| A \right|=\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& =4......(1)
\end{align}\]
We will now calculate the matrix \[cA\] when \[c=2\].
That is we will multiply matrix \[A\] with 2 and find the matrix \[2A\] by multiplying each term of the matrix \[A\] with 2.
Then we will get
\[\begin{align}
& 2A=2\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right) \\
& =\left( \begin{matrix}
2{{a}_{11}} & 2{{a}_{12}} & 2{{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right)
\end{align}\]
Now using the fact that for a matrix \[A\] such that determinant of the matrix \[A\] is equals to \[x\], if a row is multiplied by a scalar \[\lambda \], then the determinant of the resultant matrix becomes \[\lambda x\].
In this case we have \[2A=\left( \begin{matrix}
2{{a}_{11}} & 2{{a}_{12}} & 2{{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right)\]. That is each row of the matrix \[A\] is multiplied by 2.
Hence we will calculate the determinant of the matrix \[2A\] using the above stated property of determinants of matrices.
We will then get,
\[\begin{align}
& \left| 2A \right|=\left| \begin{matrix}
2{{a}_{11}} & 2{{a}_{12}} & 2{{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right| \\
& =2\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
2{{a}_{21}} & 2{{a}_{22}} & 2{{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right| \\
& =\left( 2\times 2 \right)\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
2{{a}_{31}} & 2{{a}_{32}} & 2{{a}_{33}} \\
\end{matrix} \right| \\
& =\left( 2\times 2\times 2 \right)\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& =8\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|
\end{align}\]
Now on substituting the value in equation (1) in the above equation, we get
\[\begin{align}
& \left| 2A \right|=8\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& =8\left| A \right| \\
& =8\times 4 \\
& =32
\end{align}\]
Therefore we get that the value of \[\left| 2A \right|\] is equal to 32.
Note:
In this problem, we can also determine the value of \[\left| 2A \right|\] using the property of determinant of matrix that if the determinant of the matrix \[A\] is equals to \[x\], then for any scalar \[c\] the determinant of the matrix \[cA\] is given by \[{{c}^{m}}\left| A \right|\].
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
