
Let ${z_k} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right); k = 1,2,......9.$
List-I List-II (P) For each ${z_k}$ there exists a ${z_j}$ such that ${z_k} \cdot {z_j} = 1$ (1) True (Q) There exist a $k \in \left( {1,2,......,9} \right)$ such that ${z_1} \cdot z = {z_k}$ has no solution $z$ in the set of complex numbers (2) False (R) $\dfrac{{\left| {1 - {z_1}} \right|\left| {1 - {z_2}} \right|......\left| {1 - {z_9}} \right|}}{{10}}$ is equals to (3) 1 (S) $1 - \sum\nolimits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{100}}} \right)} $ (4) 2
Which of the following is the correct match?
A. P-1, Q-2, R-4, S-3
B. P-2, Q-1, R-3, S-4
C. P-1, Q-2, R-3, S-4
D. P-2, Q-1, R-4, S-3
| List-I | List-II |
| (P) For each ${z_k}$ there exists a ${z_j}$ such that ${z_k} \cdot {z_j} = 1$ | (1) True |
| (Q) There exist a $k \in \left( {1,2,......,9} \right)$ such that ${z_1} \cdot z = {z_k}$ has no solution $z$ in the set of complex numbers | (2) False |
| (R) $\dfrac{{\left| {1 - {z_1}} \right|\left| {1 - {z_2}} \right|......\left| {1 - {z_9}} \right|}}{{10}}$ is equals to | (3) 1 |
| (S) $1 - \sum\nolimits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{100}}} \right)} $ | (4) 2 |
Answer
577.2k+ views
Hint: A number of the form $z = a + ib$ , where $a{\text{ and }}b$ are real numbers, is called a complex number, $a$ is called the real part, and $b$ called the imaginary part.
The conjugate of the complex number $z = a + ib$ , denoted by $\bar z$,
$\bar z = a - ib$
If $n$ is a positive integer, then $'x'$ is said to be an ${n^{th}}$ root of unity if it satisfies the equation ${x^n} = 1$ .
For example: For $n = 3$ , $'x'$ is said to be an ${3^{rd}}$ or cubic root of unity of equation ${x^3} = 1$ .
The complex expression ${x_k} = \cos \left( {\dfrac{{2k\pi }}{n}} \right) + i\sin \left( {\dfrac{{2k\pi }}{n}} \right);n = 1,2,......,\left( {n - 1} \right)$ is the ${n^{th}}$ root of unity.
You can also derive the ${n^{th}}$ root of unity but it is advisable to remember it.
Complete step-by-step answer:
Given that ${z_k} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right);k = 1,2,......,9.$
${z_k}$ is a complex number. For every complex number, there exists its conjugate $\overline {{z_k}} $
For $k = 1$, ${z_1} = \cos \left( {\dfrac{\pi }{5}} \right) + i\sin \left( {\dfrac{\pi }{5}} \right)$
Then its conjugate, $\overline {{z_1}} = \cos \left( {\dfrac{\pi }{5}} \right) - i\sin \left( {\dfrac{\pi }{5}} \right)$
Let's find ${z_1} \cdot \overline {{z_1}} $
${z_1} \cdot \overline {{z_1}} = \left[ {\cos \left( {\dfrac{\pi }{5}} \right) + i\sin \left( {\dfrac{\pi }{5}} \right)} \right]\left[ {\cos \left( {\dfrac{\pi }{5}} \right) - i\sin \left( {\dfrac{\pi }{5}} \right)} \right]$
Using identity $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
On comparing with the above identity:
$a = \cos \left( {\dfrac{\pi }{5}} \right)$ , $b = i\sin \left( {\dfrac{\pi }{5}} \right)$
$
{z_1} \cdot \overline {{z_1}} = {\left( {\cos \left( {\dfrac{\pi }{5}} \right)} \right)^2} - {\left( {i\sin \left( {\dfrac{\pi }{5}} \right)} \right)^2} \\
\Rightarrow {\left( {\cos \left( {\dfrac{\pi }{5}} \right)} \right)^2} - {i^2}{\left( {\sin \left( {\dfrac{\pi }{5}} \right)} \right)^2} \\
$
We know, ${i^2} = - 1$ , substituting it.
${z_1} \cdot \overline {{z_1}} = {\left( {\cos \left( {\dfrac{\pi }{5}} \right)} \right)^2} + {\left( {i\sin \left( {\dfrac{\pi }{5}} \right)} \right)^2}$
Using trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$
${z_1} \cdot \overline {{z_1}} = 1$
This result is true for every $k \in \left( {1,2,......,9} \right)$
so that \[{z_k} \cdot \overline {{z_k}} = 1\]
$ \Rightarrow \overline {{z_k}} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) - i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right);k = 1,2,......,9.$
Take ${z_j} = \overline {{z_k}} $, then the given statement:
For each ${z_k}$ there exists a ${z_j}$ such that ${z_k} \cdot {z_j} = 1$ is true.
Solving (Q)
The given equation ${z_1} \cdot z = {z_k}$
Multiplying both sides by the conjugate of ${z_1}$ . i.e. $\overline {{z_1}} $
$\overline {{z_1}} {z_1} \cdot z = \overline {{z_1}} \cdot {z_k}$
We know, ${z_1} \cdot \overline {{z_1}} = 1$
$
\Rightarrow 1 \cdot z = \overline {{z_1}} \cdot {z_k} \\
\Rightarrow z = \overline {{z_1}} \cdot {z_k} \\
$
The term $\overline {{z_1}} \cdot {z_k}$ is a multiplication of two complex numbers $\overline {{z_1}} {\text{ and }}{z_k}$ , it will be either real or complex number. In other words, the product $\overline {{z_1}} \cdot {z_k}$ exists.
Hence, the value of $z$ in equation ${z_1} \cdot z = {z_k}$ exists.
Therefore, the given statement:
There exist a $k \in \left( {1,2,......,9} \right)$ such that ${z_1} \cdot z = {z_k}$ has no solution $z$ in the set of complex numbers is false
Solving (R):
On comparing with ${x_k} = \cos \left( {\dfrac{{2k\pi }}{n}} \right) + i\sin \left( {\dfrac{{2k\pi }}{n}} \right);k = 1,2,......,\left( {k - 1} \right)$
The given expression ${z_k} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right);k = 1,2,......,9.$
Value of n = 10
So, ${z_k}$ is the tenth root of unity.
The expansion of the equation ${x^{10}} - 1 = 0$ gives the roots.
${x^{10}} - 1 = \left( {x - 1} \right)\left( {x - {z_1}} \right)\left( {x - {z_2}} \right)......\left( {x - {z_9}} \right)$
$\dfrac{{{x^{10}} - 1}}{{\left( {x - 1} \right)}} = \left( {x - {z_1}} \right)\left( {x - {z_2}} \right)......\left( {x - {z_9}} \right)$
The expression $\dfrac{{{x^{10}} - 1}}{{\left( {x - 1} \right)}}$ is the sum of Geometric Progression, G.P. $1,{x^1},{x^2},{x^3},......,{x^9}$
$\dfrac{{{x^{10}} - 1}}{{\left( {x - 1} \right)}}$ $ = 1 + {x^1} + {x^2} + {x^3} + ...... + {x^9}$
$ \Rightarrow 1 + x + {x^2} + ...... + {x^9} = \left( {x - {z_1}} \right)\left( {x - {z_2}} \right)......\left( {x - {z_9}} \right)$
Taking modulus on both sides
$ \Rightarrow \left| {1 + x + {x^2} + ...... + {x^9}} \right| = \left| {\left( {x - {z_1}} \right)\left( {x - {z_2}} \right)......\left( {x - {z_9}} \right)} \right|$
Put $x = 1$
$ \Rightarrow \left| {1 + 1 + 1 + ...... + 1} \right| = \left| {\left( {1 - {z_1}} \right)} \right|\left| {\left( {1 - {z_2}} \right)} \right|......\left| {\left( {1 - {z_9}} \right)} \right|$
$ \Rightarrow \left| {\left( {1 - {z_1}} \right)} \right|\left| {\left( {1 - {z_2}} \right)} \right|......\left| {\left( {1 - {z_9}} \right)} \right| = 10$
Given expression $\dfrac{{\left| {1 - {z_1}} \right|\left| {1 - {z_2}} \right|......\left| {1 - {z_9}} \right|}}{{10}}$
$ \Rightarrow \dfrac{{10}}{{10}} = 1$
Solving (S):
In the equation ${x^{10}} - 1 = 0$
Sum of its roots = 0
Given ${z_k}$ is the tenth root of unity.
$ \Rightarrow \sum\limits_{k = 0}^9 {{z_k}} = 0$
Given that ${z_k} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right);k = 1,2,......,9.$
$\sum\limits_{k = 0}^9 {\left[ {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} \right]} = 0$
$ \Rightarrow \sum\limits_{k = 0}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} + i\sum\limits_{k = 0}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$
The term \[\sum\limits_{k = 0}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = \cos \left( {\dfrac{{2\left( 0 \right)\pi }}{{10}}} \right) + \cos \left( {\dfrac{{2\left( 1 \right)\pi }}{{10}}} \right) + \cos \left( {\dfrac{{2\left( 2 \right)\pi }}{{10}}} \right) + ...\] will be some real number, and similarly, the term $\sum\limits_{k = 0}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} $ will also be some real number.
For the complex number $a + ib = 0$ , $a = 0,b = 0$.
That is why $\sum\limits_{k = 0}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$ and $\sum\limits_{k = 0}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$
$ \Rightarrow \cos \left( {\dfrac{{2\left( 0 \right)\pi }}{{10}}} \right) + \sum\limits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$
$ \Rightarrow \cos \left( 0 \right) + \sum\limits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$
We know, $\cos \left( 0 \right) = 1$
$ \Rightarrow \sum\limits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 1$
The given expression in (S):
$1 - \sum\nolimits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{100}}} \right)} $
$ \Rightarrow 1 - \left( { - 1} \right) = 2$
So, the correct answer is “Option C”.
Note: In the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$ make sure that the angle of sine and cosine is the same.
The value of unknown (or variable) is an equation that is known as its solution.
Notice that for $\sum\limits_{k = 0}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$
$\sin \left( 0 \right) + \sum\limits_{k = 1}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$
We know $\sin 0 = 0$
Thus, the summation from $k = 1{\text{ to 9}}$, $\sum\limits_{k = 1}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} $ is still 0.
The conjugate of the complex number $z = a + ib$ , denoted by $\bar z$,
$\bar z = a - ib$
If $n$ is a positive integer, then $'x'$ is said to be an ${n^{th}}$ root of unity if it satisfies the equation ${x^n} = 1$ .
For example: For $n = 3$ , $'x'$ is said to be an ${3^{rd}}$ or cubic root of unity of equation ${x^3} = 1$ .
The complex expression ${x_k} = \cos \left( {\dfrac{{2k\pi }}{n}} \right) + i\sin \left( {\dfrac{{2k\pi }}{n}} \right);n = 1,2,......,\left( {n - 1} \right)$ is the ${n^{th}}$ root of unity.
You can also derive the ${n^{th}}$ root of unity but it is advisable to remember it.
Complete step-by-step answer:
Given that ${z_k} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right);k = 1,2,......,9.$
${z_k}$ is a complex number. For every complex number, there exists its conjugate $\overline {{z_k}} $
For $k = 1$, ${z_1} = \cos \left( {\dfrac{\pi }{5}} \right) + i\sin \left( {\dfrac{\pi }{5}} \right)$
Then its conjugate, $\overline {{z_1}} = \cos \left( {\dfrac{\pi }{5}} \right) - i\sin \left( {\dfrac{\pi }{5}} \right)$
Let's find ${z_1} \cdot \overline {{z_1}} $
${z_1} \cdot \overline {{z_1}} = \left[ {\cos \left( {\dfrac{\pi }{5}} \right) + i\sin \left( {\dfrac{\pi }{5}} \right)} \right]\left[ {\cos \left( {\dfrac{\pi }{5}} \right) - i\sin \left( {\dfrac{\pi }{5}} \right)} \right]$
Using identity $\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}$
On comparing with the above identity:
$a = \cos \left( {\dfrac{\pi }{5}} \right)$ , $b = i\sin \left( {\dfrac{\pi }{5}} \right)$
$
{z_1} \cdot \overline {{z_1}} = {\left( {\cos \left( {\dfrac{\pi }{5}} \right)} \right)^2} - {\left( {i\sin \left( {\dfrac{\pi }{5}} \right)} \right)^2} \\
\Rightarrow {\left( {\cos \left( {\dfrac{\pi }{5}} \right)} \right)^2} - {i^2}{\left( {\sin \left( {\dfrac{\pi }{5}} \right)} \right)^2} \\
$
We know, ${i^2} = - 1$ , substituting it.
${z_1} \cdot \overline {{z_1}} = {\left( {\cos \left( {\dfrac{\pi }{5}} \right)} \right)^2} + {\left( {i\sin \left( {\dfrac{\pi }{5}} \right)} \right)^2}$
Using trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$
${z_1} \cdot \overline {{z_1}} = 1$
This result is true for every $k \in \left( {1,2,......,9} \right)$
so that \[{z_k} \cdot \overline {{z_k}} = 1\]
$ \Rightarrow \overline {{z_k}} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) - i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right);k = 1,2,......,9.$
Take ${z_j} = \overline {{z_k}} $, then the given statement:
For each ${z_k}$ there exists a ${z_j}$ such that ${z_k} \cdot {z_j} = 1$ is true.
Solving (Q)
The given equation ${z_1} \cdot z = {z_k}$
Multiplying both sides by the conjugate of ${z_1}$ . i.e. $\overline {{z_1}} $
$\overline {{z_1}} {z_1} \cdot z = \overline {{z_1}} \cdot {z_k}$
We know, ${z_1} \cdot \overline {{z_1}} = 1$
$
\Rightarrow 1 \cdot z = \overline {{z_1}} \cdot {z_k} \\
\Rightarrow z = \overline {{z_1}} \cdot {z_k} \\
$
The term $\overline {{z_1}} \cdot {z_k}$ is a multiplication of two complex numbers $\overline {{z_1}} {\text{ and }}{z_k}$ , it will be either real or complex number. In other words, the product $\overline {{z_1}} \cdot {z_k}$ exists.
Hence, the value of $z$ in equation ${z_1} \cdot z = {z_k}$ exists.
Therefore, the given statement:
There exist a $k \in \left( {1,2,......,9} \right)$ such that ${z_1} \cdot z = {z_k}$ has no solution $z$ in the set of complex numbers is false
Solving (R):
On comparing with ${x_k} = \cos \left( {\dfrac{{2k\pi }}{n}} \right) + i\sin \left( {\dfrac{{2k\pi }}{n}} \right);k = 1,2,......,\left( {k - 1} \right)$
The given expression ${z_k} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right);k = 1,2,......,9.$
Value of n = 10
So, ${z_k}$ is the tenth root of unity.
The expansion of the equation ${x^{10}} - 1 = 0$ gives the roots.
${x^{10}} - 1 = \left( {x - 1} \right)\left( {x - {z_1}} \right)\left( {x - {z_2}} \right)......\left( {x - {z_9}} \right)$
$\dfrac{{{x^{10}} - 1}}{{\left( {x - 1} \right)}} = \left( {x - {z_1}} \right)\left( {x - {z_2}} \right)......\left( {x - {z_9}} \right)$
The expression $\dfrac{{{x^{10}} - 1}}{{\left( {x - 1} \right)}}$ is the sum of Geometric Progression, G.P. $1,{x^1},{x^2},{x^3},......,{x^9}$
$\dfrac{{{x^{10}} - 1}}{{\left( {x - 1} \right)}}$ $ = 1 + {x^1} + {x^2} + {x^3} + ...... + {x^9}$
$ \Rightarrow 1 + x + {x^2} + ...... + {x^9} = \left( {x - {z_1}} \right)\left( {x - {z_2}} \right)......\left( {x - {z_9}} \right)$
Taking modulus on both sides
$ \Rightarrow \left| {1 + x + {x^2} + ...... + {x^9}} \right| = \left| {\left( {x - {z_1}} \right)\left( {x - {z_2}} \right)......\left( {x - {z_9}} \right)} \right|$
Put $x = 1$
$ \Rightarrow \left| {1 + 1 + 1 + ...... + 1} \right| = \left| {\left( {1 - {z_1}} \right)} \right|\left| {\left( {1 - {z_2}} \right)} \right|......\left| {\left( {1 - {z_9}} \right)} \right|$
$ \Rightarrow \left| {\left( {1 - {z_1}} \right)} \right|\left| {\left( {1 - {z_2}} \right)} \right|......\left| {\left( {1 - {z_9}} \right)} \right| = 10$
Given expression $\dfrac{{\left| {1 - {z_1}} \right|\left| {1 - {z_2}} \right|......\left| {1 - {z_9}} \right|}}{{10}}$
$ \Rightarrow \dfrac{{10}}{{10}} = 1$
Solving (S):
In the equation ${x^{10}} - 1 = 0$
Sum of its roots = 0
Given ${z_k}$ is the tenth root of unity.
$ \Rightarrow \sum\limits_{k = 0}^9 {{z_k}} = 0$
Given that ${z_k} = \cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right);k = 1,2,......,9.$
$\sum\limits_{k = 0}^9 {\left[ {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right) + i\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} \right]} = 0$
$ \Rightarrow \sum\limits_{k = 0}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} + i\sum\limits_{k = 0}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$
The term \[\sum\limits_{k = 0}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = \cos \left( {\dfrac{{2\left( 0 \right)\pi }}{{10}}} \right) + \cos \left( {\dfrac{{2\left( 1 \right)\pi }}{{10}}} \right) + \cos \left( {\dfrac{{2\left( 2 \right)\pi }}{{10}}} \right) + ...\] will be some real number, and similarly, the term $\sum\limits_{k = 0}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} $ will also be some real number.
For the complex number $a + ib = 0$ , $a = 0,b = 0$.
That is why $\sum\limits_{k = 0}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$ and $\sum\limits_{k = 0}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$
$ \Rightarrow \cos \left( {\dfrac{{2\left( 0 \right)\pi }}{{10}}} \right) + \sum\limits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$
$ \Rightarrow \cos \left( 0 \right) + \sum\limits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$
We know, $\cos \left( 0 \right) = 1$
$ \Rightarrow \sum\limits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 1$
The given expression in (S):
$1 - \sum\nolimits_{k = 1}^9 {\cos \left( {\dfrac{{2k\pi }}{{100}}} \right)} $
$ \Rightarrow 1 - \left( { - 1} \right) = 2$
So, the correct answer is “Option C”.
Note: In the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$ make sure that the angle of sine and cosine is the same.
The value of unknown (or variable) is an equation that is known as its solution.
Notice that for $\sum\limits_{k = 0}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$
$\sin \left( 0 \right) + \sum\limits_{k = 1}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} = 0$
We know $\sin 0 = 0$
Thus, the summation from $k = 1{\text{ to 9}}$, $\sum\limits_{k = 1}^9 {\sin \left( {\dfrac{{2k\pi }}{{10}}} \right)} $ is still 0.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

