
Let y=f(x) be a quadratic function with f '(2)=1. Find the value of the integral $ \int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} $
Answer
562.2k+ views
Hint: In this question, we need to evaluate the value of the definite integral $ \int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} $ . For this, we will use the property of the quadratic equation and the follow the integral by parts method.
Complete step-by-step answer:
The standard quadratic equation is given as: $ f(x) = a{x^2} + bx + c $
Differentiating the standard quadratic equation, we get: $ f'(x) = ax + b $
Again, differentiating the equation, we get: $ f''(x) = a $
So, we can say that the double differentiation of the quadratic equation yields a constant value.
Now, following the integral by parts to integrate the integral $ \int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} $ where, f(x) is considered to be the first function and $ \sin \left( {\dfrac{{x - 2}}{2}} \right) $ is considered to be the second function.
$
\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = f(x) \times \int {\sin \left( {\dfrac{{x - 2}}{2}} \right)dx} - \int {\left( {\dfrac{d}{{dx}}\left( {f(x)} \right) \times \int {\sin \left( {\dfrac{{x - 2}}{2}} \right)dx} } \right)dx} \\
= f(x) \times \dfrac{{ - \cos \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} - \int {f'(x) \times } \left( {\dfrac{{ - \cos \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}} \right)dx \\
= - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 2\left[ {\int {f'(x)\cos \left( {\dfrac{{x - 2}}{2}} \right)dx} } \right] \\
$
Again, applying the integral by parts method on the above equation by considering f’(x) as the first function and $ \cos \left( {\dfrac{{x - 2}}{2}} \right) $ as the second function, we get
$
\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 2\left[ {f'(x)\int {\cos \left( {\dfrac{{x - 2}}{2}} \right)dx - \int {\left( {\dfrac{d}{{dx}}\left( {f'(x)} \right) \times \int {\cos \left( {\dfrac{{x - 2}}{2}} \right)dx} } \right)dx} } } \right] \\
= - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 2f'(x) \times \dfrac{{\sin \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} - 2\int {f''(x) \times \dfrac{{\sin \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}} dx \\
$
As, the double differentiation of the quadratic equation, is given by $ f''(x) = a $ so, we can take the constant term out of the integral part.
$
\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 4f'(x)\sin \left( {\dfrac{{x - 2}}{2}} \right) + 4f''(x)\dfrac{{\cos \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} \\
= - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 4f'(x)\sin \left( {\dfrac{{x - 2}}{2}} \right) + 8f''(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) \\
$
According to the question, f’(2)=1 and lower and upper limits are $ \left( {2 - \pi } \right) $ and $ \left( {2 + \pi } \right) $ so, substituting the value in the above equation, we get
\[\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = \left| { - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 4f'(x)\sin \left( {\dfrac{{x - 2}}{2}} \right) + 8f''(x)\cos \left( {\dfrac{{x - 2}}{2}} \right)} \right|_{2 - \pi }^{2 + \pi }\]
The upper limit is calculated as:
\[
UL = \left( { - 2f(2 + \pi )\cos \left( {\dfrac{{2 + \pi - 2}}{2}} \right) + 4f'(2 + \pi )\sin \left( {\dfrac{{2 + \pi - 2}}{2}} \right) + 8f''(2 + \pi )\cos \left( {\dfrac{{2 + \pi - 2}}{2}} \right)} \right) \\
= \left( { - 2f(2 + \pi )\cos \dfrac{\pi }{2} + 4f'(2 + \pi )\sin \dfrac{\pi }{2} + 8f''(2 + \pi )\cos \dfrac{\pi }{2}} \right) \\
= 4f'(2 + \pi ) \\
\]
Similarly, the lower limit is:
\[
LL = \left( { - 2f(2 - \pi )\cos \left( {\dfrac{{2 - \pi - 2}}{2}} \right) + 4f'(2 - \pi )\sin \left( {\dfrac{{2 - \pi - 2}}{2}} \right) + 8f''(2 - \pi )\cos \left( {\dfrac{{2 - \pi - 2}}{2}} \right)} \right) \\
= \left( { - 2f(2 - \pi )\cos \dfrac{\pi }{2} + 4f'(2 - \pi )\sin \left( {\dfrac{{ - \pi }}{2}} \right) + 8f''(2 - \pi )\cos \left( {\dfrac{{ - \pi }}{2}} \right)} \right) \\
= - 4f'(2 - \pi ) \\
\]
Hence, we can write
$
\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = UL - LL \\
= 4f'(2 + \pi ) + 4f'(2 - \pi ) \\
$
Substituting the value of f’(x)=ax+b in the above equation, we get
\[
\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = 4f'(2 + \pi ) + 4f'(2 - \pi ) \\
= 4\left[ {a(2 + \pi ) + b + \left( {a(2 - \pi ) + b} \right)} \right] \\
= 4\left( {2a + a\pi + b + 2a - a\pi + b} \right) \\
= 4\left( {4a + 2b} \right) \\
= 8(2a + b) \\
\]
Substituting the value of the x as 2 in the equation $ f'(x) = ax + b $ , we get
$
f'(x) = ax + b \\
f'(2) = 2a + b \\
= 1 \\
$
So, the above equation can be written as:
\[
\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = 8 \times 1 \\
= 8 \\
\]
Hence, the value of the definite integral $ \int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} $ is 8.
Note: Students should be careful while considering the values of the first and the second function by following the ILATE rule which is expanded as Inverse, Logarithmic, Algebraic, Trigonometric and Exponential. The function which comes first in ILATE should be taken as the first function.
Complete step-by-step answer:
The standard quadratic equation is given as: $ f(x) = a{x^2} + bx + c $
Differentiating the standard quadratic equation, we get: $ f'(x) = ax + b $
Again, differentiating the equation, we get: $ f''(x) = a $
So, we can say that the double differentiation of the quadratic equation yields a constant value.
Now, following the integral by parts to integrate the integral $ \int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} $ where, f(x) is considered to be the first function and $ \sin \left( {\dfrac{{x - 2}}{2}} \right) $ is considered to be the second function.
$
\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = f(x) \times \int {\sin \left( {\dfrac{{x - 2}}{2}} \right)dx} - \int {\left( {\dfrac{d}{{dx}}\left( {f(x)} \right) \times \int {\sin \left( {\dfrac{{x - 2}}{2}} \right)dx} } \right)dx} \\
= f(x) \times \dfrac{{ - \cos \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} - \int {f'(x) \times } \left( {\dfrac{{ - \cos \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}} \right)dx \\
= - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 2\left[ {\int {f'(x)\cos \left( {\dfrac{{x - 2}}{2}} \right)dx} } \right] \\
$
Again, applying the integral by parts method on the above equation by considering f’(x) as the first function and $ \cos \left( {\dfrac{{x - 2}}{2}} \right) $ as the second function, we get
$
\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 2\left[ {f'(x)\int {\cos \left( {\dfrac{{x - 2}}{2}} \right)dx - \int {\left( {\dfrac{d}{{dx}}\left( {f'(x)} \right) \times \int {\cos \left( {\dfrac{{x - 2}}{2}} \right)dx} } \right)dx} } } \right] \\
= - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 2f'(x) \times \dfrac{{\sin \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} - 2\int {f''(x) \times \dfrac{{\sin \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}} dx \\
$
As, the double differentiation of the quadratic equation, is given by $ f''(x) = a $ so, we can take the constant term out of the integral part.
$
\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 4f'(x)\sin \left( {\dfrac{{x - 2}}{2}} \right) + 4f''(x)\dfrac{{\cos \left( {\dfrac{{x - 2}}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}} \\
= - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 4f'(x)\sin \left( {\dfrac{{x - 2}}{2}} \right) + 8f''(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) \\
$
According to the question, f’(2)=1 and lower and upper limits are $ \left( {2 - \pi } \right) $ and $ \left( {2 + \pi } \right) $ so, substituting the value in the above equation, we get
\[\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = \left| { - 2f(x)\cos \left( {\dfrac{{x - 2}}{2}} \right) + 4f'(x)\sin \left( {\dfrac{{x - 2}}{2}} \right) + 8f''(x)\cos \left( {\dfrac{{x - 2}}{2}} \right)} \right|_{2 - \pi }^{2 + \pi }\]
The upper limit is calculated as:
\[
UL = \left( { - 2f(2 + \pi )\cos \left( {\dfrac{{2 + \pi - 2}}{2}} \right) + 4f'(2 + \pi )\sin \left( {\dfrac{{2 + \pi - 2}}{2}} \right) + 8f''(2 + \pi )\cos \left( {\dfrac{{2 + \pi - 2}}{2}} \right)} \right) \\
= \left( { - 2f(2 + \pi )\cos \dfrac{\pi }{2} + 4f'(2 + \pi )\sin \dfrac{\pi }{2} + 8f''(2 + \pi )\cos \dfrac{\pi }{2}} \right) \\
= 4f'(2 + \pi ) \\
\]
Similarly, the lower limit is:
\[
LL = \left( { - 2f(2 - \pi )\cos \left( {\dfrac{{2 - \pi - 2}}{2}} \right) + 4f'(2 - \pi )\sin \left( {\dfrac{{2 - \pi - 2}}{2}} \right) + 8f''(2 - \pi )\cos \left( {\dfrac{{2 - \pi - 2}}{2}} \right)} \right) \\
= \left( { - 2f(2 - \pi )\cos \dfrac{\pi }{2} + 4f'(2 - \pi )\sin \left( {\dfrac{{ - \pi }}{2}} \right) + 8f''(2 - \pi )\cos \left( {\dfrac{{ - \pi }}{2}} \right)} \right) \\
= - 4f'(2 - \pi ) \\
\]
Hence, we can write
$
\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = UL - LL \\
= 4f'(2 + \pi ) + 4f'(2 - \pi ) \\
$
Substituting the value of f’(x)=ax+b in the above equation, we get
\[
\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = 4f'(2 + \pi ) + 4f'(2 - \pi ) \\
= 4\left[ {a(2 + \pi ) + b + \left( {a(2 - \pi ) + b} \right)} \right] \\
= 4\left( {2a + a\pi + b + 2a - a\pi + b} \right) \\
= 4\left( {4a + 2b} \right) \\
= 8(2a + b) \\
\]
Substituting the value of the x as 2 in the equation $ f'(x) = ax + b $ , we get
$
f'(x) = ax + b \\
f'(2) = 2a + b \\
= 1 \\
$
So, the above equation can be written as:
\[
\int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} = 8 \times 1 \\
= 8 \\
\]
Hence, the value of the definite integral $ \int\limits_{2 - \pi }^{2 + \pi } {f(x) \cdot \sin \left( {\dfrac{{x - 2}}{2}} \right)dx} $ is 8.
Note: Students should be careful while considering the values of the first and the second function by following the ILATE rule which is expanded as Inverse, Logarithmic, Algebraic, Trigonometric and Exponential. The function which comes first in ILATE should be taken as the first function.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

