
Let we are given summation as ${{S}_{n}}=\sum\limits_{k=1}^{n}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}}$ and ${{T}_{n}}=\sum\limits_{k=0}^{n-1}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}}$ for $n=1,2,3...$ then;\[\]
A.${{S}_{n}}<\dfrac{\pi }{3\sqrt{3}}$ \[\]
B. ${{S}_{n}}>\dfrac{\pi }{3\sqrt{3}}$\[\]
C.${{T}_{n}}<\dfrac{\pi }{3\sqrt{3}}$\[\]
D.${{T}_{n}}>\dfrac{\pi }{3\sqrt{3}}$\[\]
Answer
556.5k+ views
Hint: We are going to use Riemann integral as a limit of sum. We take limit $n\to \infty $ on the summation ${{S}_{n}}$ and deduce that ${{S}_{n}}<\underset{n\to \infty }{\mathop{\lim }}\,{{S}_{n}}$. We express ${{S}_{n}}$ in the form of $\sum\limits_{k=1}^{n}{\dfrac{1}{n}f\left( \dfrac{k}{n} \right)}$. We put $\dfrac{k}{n}=x$ and the use the Riemann integral formula $\int_{0}^{1}{f\left( x \right)dx}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{1}{n}f\left( \dfrac{k}{n} \right)}$. We similarly proceed for ${{T}_{n}}$ where we use the Riemann integral formula $\int_{0}^{1}{f\left( x \right)dx}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=0}^{n-1}{\dfrac{1}{n}f\left( \dfrac{k}{n} \right)}$.\[\]
Complete step-by-step solution
We know from Riemann’s integration that we can convert the limit of a sum to definite integral as
\[\int_{0}^{1}{f\left( x \right)dx}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{1}{n}f\left( \dfrac{k}{n} \right)}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=0}^{n-1}{\dfrac{1}{n}f\left( \dfrac{k}{n} \right)}\]
We are given two summations in the question as;
\[\begin{align}
& {{S}_{n}}=\sum\limits_{k=1}^{n}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}} \\
& {{T}_{n}}=\sum\limits_{k=1}^{n-1}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}} \\
\end{align}\]
We see in the options the bounds of ${{S}_{n}}$ and ${{T}_{n}}$. So let us consider the limit $n\to \infty $ on ${{S}_{n}}$ an and have
\[{{S}_{n}}=\sum\limits_{k=1}^{n}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}}<\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}}\]
Let take ${{n}^{2}}$ common from the denominator terms in the right hand side to have;
\[\begin{align}
& \Rightarrow {{S}_{n}}<\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{n}{{{n}^{2}}\left( 1+\dfrac{k}{n}+\dfrac{{{k}^{2}}}{{{n}^{2}}} \right)}} \\
& \Rightarrow {{S}_{n}}<\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{1}{n}\dfrac{1}{\left( 1+\dfrac{k}{n}+{{\left( \dfrac{k}{n} \right)}^{2}} \right)}} \\
\end{align}\]
We assign variable $\dfrac{k}{n}=x$ and use Riemann’s integration formula to express the summation as definite integral as
\[\Rightarrow {{S}_{n}}<\int_{0}^{1}{\dfrac{1}{1+x+{{x}^{2}}}}.......\left( 1 \right)\]
We express the polynomial in the denominator in terms of complete square so that we can use the standard indefinite integral $\int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)+C},a\ne 0$. So we have;
\[\begin{align}
& \Rightarrow 1+x+{{x}^{2}} \\
& \Rightarrow {{x}^{2}}+2\cdot x\cdot \dfrac{1}{2}+{{\left( \dfrac{1}{2} \right)}^{2}}-{{\left( \dfrac{1}{2} \right)}^{2}}+1 \\
& \Rightarrow {{\left( x+\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4} \\
& \Rightarrow {{\left( x+\dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}} \\
\end{align}\]
We put the above obtained expression in (1) to have;
\[\Rightarrow {{S}_{n}}<\int_{0}^{1}{\dfrac{1}{{{\left( x+\dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}}}\]
We use the standard integral $\int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)+C},a\ne 0$ to evaluate the definite integral within limits have;
\[\begin{align}
& \Rightarrow {{S}_{n}}<\left[ \dfrac{1}{\dfrac{\sqrt{3}}{2}}{{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}} \right) \right]_{x=0}^{x=1} \\
& \Rightarrow {{S}_{n}}<\dfrac{2}{\sqrt{3}}\left[ {{\tan }^{-1}}\left( \dfrac{2x+1}{\sqrt{3}} \right) \right]_{x=0}^{x=1} \\
& \Rightarrow {{S}_{n}}<\dfrac{2}{\sqrt{3}}\left[ {{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\dfrac{1}{\sqrt{3}}\right] \\
& \Rightarrow {{S}_{n}}<\dfrac{2}{\sqrt{3}}\left( \dfrac{\pi }{3}-\dfrac{\pi }{6} \right)=\dfrac{\pi }{3\sqrt{3}}....\left( 1 \right) \\
\end{align}\]
So we have the upper bounds for ${{S}_{n}}$ as ${{S}_{n}}<\dfrac{\pi }{3\sqrt{3}}$. We can similarly take limit $n\to \infty $ for the summation of ${{T}_{n}}$ and then take ${{n}^{2}}$ common in the denominator of ${{T}_{n}}$ to have;
\[\begin{align}
& {{T}_{n}}=\sum\limits_{k=0}^{n-1}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}}<\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=0}^{n-1}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}} \\
& \Rightarrow {{T}_{n}}<\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=0}^{n-1}{\dfrac{1}{n}\cdot \dfrac{1}{1+\dfrac{k}{n}+{{\left( \dfrac{k}{n} \right)}^{2}}}} \\
\end{align}\]
We similarly take $x=\dfrac{k}{n}$ in the above step and then use Riemann’s integration formula to have;
\[\Rightarrow {{T}_{n}}<\int_{0}^{1}{\dfrac{1}{1+x+{{x}^{2}}}}\]
We have already evaluated the above definite integral as $\dfrac{\pi }{3\sqrt{3}}$. So we have;
\[\Rightarrow {{T}_{n}}<\dfrac{\pi }{3\sqrt{3}}.......\left( 2 \right)\]
So we see from inequalities (1) and (2) that the correct options are A and C.
Note: We note that $n$ is the number of divisions that divides the interval $\left[ 0,1 \right]$ which is also the bounds of the integral. We can find these limits by taking $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{r}{n}$ with the initial and final value of $r$in first and last term of the summation. The general equation for definite integral as a limit of sum is given by $\int_{a}^{b}{f\left( x \right)}=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{n} \right)\left[ f\left( a \right)+f\left( a+h \right)...+f\left\{ a+\left( n-1 \right) \right\}h \right]$ where $h=\dfrac{b-a}{n}$.
Complete step-by-step solution
We know from Riemann’s integration that we can convert the limit of a sum to definite integral as
\[\int_{0}^{1}{f\left( x \right)dx}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{1}{n}f\left( \dfrac{k}{n} \right)}=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=0}^{n-1}{\dfrac{1}{n}f\left( \dfrac{k}{n} \right)}\]
We are given two summations in the question as;
\[\begin{align}
& {{S}_{n}}=\sum\limits_{k=1}^{n}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}} \\
& {{T}_{n}}=\sum\limits_{k=1}^{n-1}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}} \\
\end{align}\]
We see in the options the bounds of ${{S}_{n}}$ and ${{T}_{n}}$. So let us consider the limit $n\to \infty $ on ${{S}_{n}}$ an and have
\[{{S}_{n}}=\sum\limits_{k=1}^{n}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}}<\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}}\]
Let take ${{n}^{2}}$ common from the denominator terms in the right hand side to have;
\[\begin{align}
& \Rightarrow {{S}_{n}}<\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{n}{{{n}^{2}}\left( 1+\dfrac{k}{n}+\dfrac{{{k}^{2}}}{{{n}^{2}}} \right)}} \\
& \Rightarrow {{S}_{n}}<\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=1}^{n}{\dfrac{1}{n}\dfrac{1}{\left( 1+\dfrac{k}{n}+{{\left( \dfrac{k}{n} \right)}^{2}} \right)}} \\
\end{align}\]
We assign variable $\dfrac{k}{n}=x$ and use Riemann’s integration formula to express the summation as definite integral as
\[\Rightarrow {{S}_{n}}<\int_{0}^{1}{\dfrac{1}{1+x+{{x}^{2}}}}.......\left( 1 \right)\]
We express the polynomial in the denominator in terms of complete square so that we can use the standard indefinite integral $\int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)+C},a\ne 0$. So we have;
\[\begin{align}
& \Rightarrow 1+x+{{x}^{2}} \\
& \Rightarrow {{x}^{2}}+2\cdot x\cdot \dfrac{1}{2}+{{\left( \dfrac{1}{2} \right)}^{2}}-{{\left( \dfrac{1}{2} \right)}^{2}}+1 \\
& \Rightarrow {{\left( x+\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4} \\
& \Rightarrow {{\left( x+\dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}} \\
\end{align}\]
We put the above obtained expression in (1) to have;
\[\Rightarrow {{S}_{n}}<\int_{0}^{1}{\dfrac{1}{{{\left( x+\dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}}}\]
We use the standard integral $\int{\dfrac{1}{{{x}^{2}}+{{a}^{2}}}=\dfrac{1}{a}{{\tan }^{-1}}\left( \dfrac{x}{a} \right)+C},a\ne 0$ to evaluate the definite integral within limits have;
\[\begin{align}
& \Rightarrow {{S}_{n}}<\left[ \dfrac{1}{\dfrac{\sqrt{3}}{2}}{{\tan }^{-1}}\left( \dfrac{x+\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}} \right) \right]_{x=0}^{x=1} \\
& \Rightarrow {{S}_{n}}<\dfrac{2}{\sqrt{3}}\left[ {{\tan }^{-1}}\left( \dfrac{2x+1}{\sqrt{3}} \right) \right]_{x=0}^{x=1} \\
& \Rightarrow {{S}_{n}}<\dfrac{2}{\sqrt{3}}\left[ {{\tan }^{-1}}\sqrt{3}-{{\tan }^{-1}}\dfrac{1}{\sqrt{3}}\right] \\
& \Rightarrow {{S}_{n}}<\dfrac{2}{\sqrt{3}}\left( \dfrac{\pi }{3}-\dfrac{\pi }{6} \right)=\dfrac{\pi }{3\sqrt{3}}....\left( 1 \right) \\
\end{align}\]
So we have the upper bounds for ${{S}_{n}}$ as ${{S}_{n}}<\dfrac{\pi }{3\sqrt{3}}$. We can similarly take limit $n\to \infty $ for the summation of ${{T}_{n}}$ and then take ${{n}^{2}}$ common in the denominator of ${{T}_{n}}$ to have;
\[\begin{align}
& {{T}_{n}}=\sum\limits_{k=0}^{n-1}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}}<\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=0}^{n-1}{\dfrac{n}{{{n}^{2}}+kn+{{k}^{2}}}} \\
& \Rightarrow {{T}_{n}}<\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{k=0}^{n-1}{\dfrac{1}{n}\cdot \dfrac{1}{1+\dfrac{k}{n}+{{\left( \dfrac{k}{n} \right)}^{2}}}} \\
\end{align}\]
We similarly take $x=\dfrac{k}{n}$ in the above step and then use Riemann’s integration formula to have;
\[\Rightarrow {{T}_{n}}<\int_{0}^{1}{\dfrac{1}{1+x+{{x}^{2}}}}\]
We have already evaluated the above definite integral as $\dfrac{\pi }{3\sqrt{3}}$. So we have;
\[\Rightarrow {{T}_{n}}<\dfrac{\pi }{3\sqrt{3}}.......\left( 2 \right)\]
So we see from inequalities (1) and (2) that the correct options are A and C.
Note: We note that $n$ is the number of divisions that divides the interval $\left[ 0,1 \right]$ which is also the bounds of the integral. We can find these limits by taking $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{r}{n}$ with the initial and final value of $r$in first and last term of the summation. The general equation for definite integral as a limit of sum is given by $\int_{a}^{b}{f\left( x \right)}=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{n} \right)\left[ f\left( a \right)+f\left( a+h \right)...+f\left\{ a+\left( n-1 \right) \right\}h \right]$ where $h=\dfrac{b-a}{n}$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

