
Let two matrices are given as A \[=\left( \begin{matrix}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1 \\
\end{matrix} \right)\] and 10B \[=\left( \begin{matrix}
4 & 2 & 2 \\
-5 & 0 & \alpha \\
1 & -2 & 3 \\
\end{matrix} \right)\] . If B is the inverse of A, then find the value of \[\alpha \] .
Answer
616.5k+ views
HINT: If two matrices say X and Y, of the same order are inverse of each other, then the following result or property can be used directly which is
\[X\cdot Y=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
That is, if two matrices of the same order are inverse of each other, then the product of those two matrices is an identity matrix of the same order.
Complete step-by-step solution -
As mentioned in the question, we have to find the value of \[\alpha \] , so, for that, on following the information provided in the hint, we get
\[A\cdot B=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
Now, we have to multiply A and B as follows
\[\begin{align}
& A\cdot B=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
& \left( \begin{matrix}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1 \\
\end{matrix} \right)\cdot \dfrac{1}{10}\left( \begin{matrix}
4 & 2 & 2 \\
-5 & 0 & \alpha \\
1 & -2 & 3 \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
& \dfrac{1}{10}\left( \begin{matrix}
1\cdot 4+\left( -1 \right)\cdot (-5)+1\cdot 1 & 1\cdot 2+(-1)\cdot 0+1\cdot (-2) & 1\cdot 2+(-1)\cdot \alpha +1\cdot 3 \\
2\cdot 4+1\cdot (-5)+(-3)\cdot 1 & 2\cdot 2+1\cdot 0+(-3)\cdot (-2) & 2\cdot 2+1\cdot \alpha +(-3)\cdot 3 \\
1\cdot 4+1\cdot (-5)+1\cdot 1 & 1\cdot 2+1\cdot 0+1\cdot (-2) & 1\cdot 2+1\cdot \alpha +1\cdot 3 \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
& \dfrac{1}{10}\left( \begin{matrix}
4+5+1 & 2-2 & 2-\alpha +3 \\
8-5-3 & 4+6 & 4+\alpha -9 \\
4-5+1 & 2-2 & 2+\alpha +3 \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
& \left( \begin{matrix}
10 & 0 & 5-\alpha \\
0 & 10 & -5+\alpha \\
0 & 0 & 5+\alpha \\
\end{matrix} \right)=\left( \begin{matrix}
10 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 10 \\
\end{matrix} \right) \\
\end{align}\]
On comparing LHS and RHS, we get that
\[\begin{align}
& 5-\alpha =0 \\
& -5+\alpha =0 \\
& 5+\alpha = 10 \\
\end{align}\]
From the above three equations, we can deduce that the value of \[\alpha \] is 5.
NOTE: - The students can make an error if they don’t know the fact that is mentioned in the hint which is that if two matrices say X and Y, of the same order are inverse of each other, then the following result or property can be used directly which is
\[X\cdot Y=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
That is, if two matrices of the same order are inverse of each other, then the product of those two matrices is an identity matrix of the same order.
Solving the question would not be possible if the above fact is not known beforehand.
\[X\cdot Y=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
That is, if two matrices of the same order are inverse of each other, then the product of those two matrices is an identity matrix of the same order.
Complete step-by-step solution -
As mentioned in the question, we have to find the value of \[\alpha \] , so, for that, on following the information provided in the hint, we get
\[A\cdot B=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
Now, we have to multiply A and B as follows
\[\begin{align}
& A\cdot B=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
& \left( \begin{matrix}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1 \\
\end{matrix} \right)\cdot \dfrac{1}{10}\left( \begin{matrix}
4 & 2 & 2 \\
-5 & 0 & \alpha \\
1 & -2 & 3 \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
& \dfrac{1}{10}\left( \begin{matrix}
1\cdot 4+\left( -1 \right)\cdot (-5)+1\cdot 1 & 1\cdot 2+(-1)\cdot 0+1\cdot (-2) & 1\cdot 2+(-1)\cdot \alpha +1\cdot 3 \\
2\cdot 4+1\cdot (-5)+(-3)\cdot 1 & 2\cdot 2+1\cdot 0+(-3)\cdot (-2) & 2\cdot 2+1\cdot \alpha +(-3)\cdot 3 \\
1\cdot 4+1\cdot (-5)+1\cdot 1 & 1\cdot 2+1\cdot 0+1\cdot (-2) & 1\cdot 2+1\cdot \alpha +1\cdot 3 \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
& \dfrac{1}{10}\left( \begin{matrix}
4+5+1 & 2-2 & 2-\alpha +3 \\
8-5-3 & 4+6 & 4+\alpha -9 \\
4-5+1 & 2-2 & 2+\alpha +3 \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
& \left( \begin{matrix}
10 & 0 & 5-\alpha \\
0 & 10 & -5+\alpha \\
0 & 0 & 5+\alpha \\
\end{matrix} \right)=\left( \begin{matrix}
10 & 0 & 0 \\
0 & 10 & 0 \\
0 & 0 & 10 \\
\end{matrix} \right) \\
\end{align}\]
On comparing LHS and RHS, we get that
\[\begin{align}
& 5-\alpha =0 \\
& -5+\alpha =0 \\
& 5+\alpha = 10 \\
\end{align}\]
From the above three equations, we can deduce that the value of \[\alpha \] is 5.
NOTE: - The students can make an error if they don’t know the fact that is mentioned in the hint which is that if two matrices say X and Y, of the same order are inverse of each other, then the following result or property can be used directly which is
\[X\cdot Y=\left( \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right)\]
That is, if two matrices of the same order are inverse of each other, then the product of those two matrices is an identity matrix of the same order.
Solving the question would not be possible if the above fact is not known beforehand.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

