
Let the value of the determinant $\left| {\begin{array}{*{20}{c}}
1&{\sin \alpha }&1 \\
{ - \sin \alpha }&1&{\sin \alpha } \\
{ - 1}&{ - \sin \alpha }&1
\end{array}} \right|$ be $\Delta $, then show that $\Delta $lies in the interval (2, 4).
Answer
606.9k+ views
Hint – In this question first find the value of determinant by applying basic row transformations like ${R_3} \to {R_3} + {R_1}$, then determinant will be obtained in terms of $\sin \alpha $. Use the concept that $\sin \alpha $ always lies between (-1, 1), so manipulate the determinant accordingly to get the required range of the determinant.
Complete step-by-step answer:
Given determinant
$\Delta = \left| {\begin{array}{*{20}{c}}
1&{\sin \alpha }&1 \\
{ - \sin \alpha }&1&{\sin \alpha } \\
{ - 1}&{ - \sin \alpha }&1
\end{array}} \right|$
Now apply determinant rule i.e.
$ \Rightarrow {R_3} \to {R_3} + {R_1}$
$ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
1&{\sin \alpha }&1 \\
{ - \sin \alpha }&1&{\sin \alpha } \\
{ - 1 + 1}&{ - \sin \alpha + \sin \alpha }&{1 + 1}
\end{array}} \right|$
$ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
1&{\sin \alpha }&1 \\
{ - \sin \alpha }&1&{\sin \alpha } \\
0&0&2
\end{array}} \right|$
Now expand the determinant we have,
$ \Rightarrow \Delta = 1\left| {\begin{array}{*{20}{c}}
1&{\sin \alpha } \\
0&2
\end{array}} \right| - \sin \alpha \left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&{\sin \alpha } \\
0&2
\end{array}} \right| + 1\left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&1 \\
0&0
\end{array}} \right|$
$ \Rightarrow \Delta = 1\left( {2 - 0} \right) - \sin \alpha \left( { - 2\sin \alpha - 0} \right) + 1\left( {0 - 0} \right)$
\[ \Rightarrow \Delta = 2 + 2{\sin ^2}\alpha \]................ (1)
Now as we know that $\sin \alpha $ always lie between (-1, 1)
Therefore, $ - 1 < \sin \alpha < 1$
So ${\sin ^2}\alpha $lie between (0, 1) because after squaring all negative quantities becomes positive,
$ \Rightarrow 0 < {\sin ^2}\alpha < 1$
Now multiply by 2 we have,
$ \Rightarrow 0 < 2{\sin ^2}\alpha < 2$
Now add by 2 we have,
$ \Rightarrow 2 < 2 + 2{\sin ^2}\alpha < 4$
Now from equation (1) we have,
$ \Rightarrow 2 < \Delta < 4$
Therefore lies in the interval (2, 4)
Hence proved.
Note – The determinant in the initial stages of the solution could have been solved directly even but however the main aim of applying the row transformation or even the column transformations in some of the problems of this kind is to get maximum number of zeroes inside the determinant as it helps simplification of the determinant.
Complete step-by-step answer:
Given determinant
$\Delta = \left| {\begin{array}{*{20}{c}}
1&{\sin \alpha }&1 \\
{ - \sin \alpha }&1&{\sin \alpha } \\
{ - 1}&{ - \sin \alpha }&1
\end{array}} \right|$
Now apply determinant rule i.e.
$ \Rightarrow {R_3} \to {R_3} + {R_1}$
$ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
1&{\sin \alpha }&1 \\
{ - \sin \alpha }&1&{\sin \alpha } \\
{ - 1 + 1}&{ - \sin \alpha + \sin \alpha }&{1 + 1}
\end{array}} \right|$
$ \Rightarrow \Delta = \left| {\begin{array}{*{20}{c}}
1&{\sin \alpha }&1 \\
{ - \sin \alpha }&1&{\sin \alpha } \\
0&0&2
\end{array}} \right|$
Now expand the determinant we have,
$ \Rightarrow \Delta = 1\left| {\begin{array}{*{20}{c}}
1&{\sin \alpha } \\
0&2
\end{array}} \right| - \sin \alpha \left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&{\sin \alpha } \\
0&2
\end{array}} \right| + 1\left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&1 \\
0&0
\end{array}} \right|$
$ \Rightarrow \Delta = 1\left( {2 - 0} \right) - \sin \alpha \left( { - 2\sin \alpha - 0} \right) + 1\left( {0 - 0} \right)$
\[ \Rightarrow \Delta = 2 + 2{\sin ^2}\alpha \]................ (1)
Now as we know that $\sin \alpha $ always lie between (-1, 1)
Therefore, $ - 1 < \sin \alpha < 1$
So ${\sin ^2}\alpha $lie between (0, 1) because after squaring all negative quantities becomes positive,
$ \Rightarrow 0 < {\sin ^2}\alpha < 1$
Now multiply by 2 we have,
$ \Rightarrow 0 < 2{\sin ^2}\alpha < 2$
Now add by 2 we have,
$ \Rightarrow 2 < 2 + 2{\sin ^2}\alpha < 4$
Now from equation (1) we have,
$ \Rightarrow 2 < \Delta < 4$
Therefore lies in the interval (2, 4)
Hence proved.
Note – The determinant in the initial stages of the solution could have been solved directly even but however the main aim of applying the row transformation or even the column transformations in some of the problems of this kind is to get maximum number of zeroes inside the determinant as it helps simplification of the determinant.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

