
Let the sum of n terms of an A.P be denoted by ${{S}_{n}}$. If ${{S}_{4}}=16$ and ${{S}_{6}}=-48$, then ${{S}_{10}}$ is equal to?
(A) -320
(B) -260
(C) -380
(D) -410
Answer
576.3k+ views
Hint: We start solving this problem by first using the formula for the sum of n terms of an A.P and find ${{S}_{n}}$ in terms of first term and common difference. Then we substitute the values $n=4$ and $n=6$ in ${{S}_{n}}$. Then we get two equations and we solve them to find the values of the first term and the common difference of A.P. Then let us substitute the value $n=10$ in ${{S}_{n}}$, and use the values of first term and the common difference to find the value of ${{S}_{10}}$.
Complete step-by-step answer:
We are given that the sum of n terms of an A.P is denoted by ${{S}_{n}}$.
Let the first term of the given A.P be $a$ and the common difference of given A.P be $d$. Then using the formula for sum of n terms of A.P, we get
${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$.
We are also given that ${{S}_{4}}=16$ and ${{S}_{6}}=-48$.
So, now let us substitute $n=4$ in ${{S}_{n}}$.
$\begin{align}
& \Rightarrow {{S}_{4}}=\dfrac{4}{2}\left( 2a+\left( 4-1 \right)d \right) \\
& \Rightarrow 16=2\left( 2a+3d \right) \\
& \Rightarrow 2a+3d=8 \\
\end{align}$
So, now let us substitute $n=6$ in ${{S}_{n}}$.
$\begin{align}
& \Rightarrow {{S}_{6}}=\dfrac{6}{2}\left( 2a+\left( 6-1 \right)d \right) \\
& \Rightarrow -48=3\left( 2a+5d \right) \\
& \Rightarrow 2a+5d=-16 \\
\end{align}$
So, now we have two equations with two variables.
$\begin{align}
& \Rightarrow 2a+3d=8...........\left( 1 \right) \\
& \Rightarrow 2a+5d=-16...........\left( 2 \right) \\
\end{align}$
Now, let us subtract equation (2) from equation (1). Then we get
$\begin{align}
& \Rightarrow \left( 2a+5d \right)-\left( 2a+3d \right)=-16-8 \\
& \Rightarrow 2d=-24 \\
& \Rightarrow d=-12 \\
\end{align}$
Now let us substitute the obtained value of $d$ in equation (1).
$\begin{align}
& \Rightarrow 2a+3\left( -12 \right)=8 \\
& \Rightarrow 2a-36=8 \\
& \Rightarrow 2a=36+8 \\
& \Rightarrow 2a=44 \\
& \Rightarrow a=22 \\
\end{align}$
So, we finally get the values as $a=22$ and $d=-12$.
As we need to find the value of ${{S}_{10}}$, let us substitute $n=10$ in the formula of ${{S}_{n}}$. Then we get,
$\begin{align}
& \Rightarrow {{S}_{10}}=\dfrac{10}{2}\left( 2a+\left( 10-1 \right)d \right) \\
& \Rightarrow {{S}_{10}}=5\left( 2\left( 22 \right)+9\left( -12 \right) \right) \\
& \Rightarrow {{S}_{10}}=5\left( 44-108 \right) \\
& \Rightarrow {{S}_{10}}=5\left( -64 \right) \\
& \Rightarrow {{S}_{10}}=-320 \\
\end{align}$
So, we get the value of ${{S}_{10}}$ as -320.
Hence the answer is Option A.
Note: While solving this problem one might write the sum of 10 terms in A.P as ${{S}_{10}}={{S}_{4}}+{{S}_{6}}$. But it is wrong as in ${{S}_{4}}$ and ${{S}_{6}}$ first four terms are common and the last four terms are not included in the sum.
Complete step-by-step answer:
We are given that the sum of n terms of an A.P is denoted by ${{S}_{n}}$.
Let the first term of the given A.P be $a$ and the common difference of given A.P be $d$. Then using the formula for sum of n terms of A.P, we get
${{S}_{n}}=\dfrac{n}{2}\left( 2a+\left( n-1 \right)d \right)$.
We are also given that ${{S}_{4}}=16$ and ${{S}_{6}}=-48$.
So, now let us substitute $n=4$ in ${{S}_{n}}$.
$\begin{align}
& \Rightarrow {{S}_{4}}=\dfrac{4}{2}\left( 2a+\left( 4-1 \right)d \right) \\
& \Rightarrow 16=2\left( 2a+3d \right) \\
& \Rightarrow 2a+3d=8 \\
\end{align}$
So, now let us substitute $n=6$ in ${{S}_{n}}$.
$\begin{align}
& \Rightarrow {{S}_{6}}=\dfrac{6}{2}\left( 2a+\left( 6-1 \right)d \right) \\
& \Rightarrow -48=3\left( 2a+5d \right) \\
& \Rightarrow 2a+5d=-16 \\
\end{align}$
So, now we have two equations with two variables.
$\begin{align}
& \Rightarrow 2a+3d=8...........\left( 1 \right) \\
& \Rightarrow 2a+5d=-16...........\left( 2 \right) \\
\end{align}$
Now, let us subtract equation (2) from equation (1). Then we get
$\begin{align}
& \Rightarrow \left( 2a+5d \right)-\left( 2a+3d \right)=-16-8 \\
& \Rightarrow 2d=-24 \\
& \Rightarrow d=-12 \\
\end{align}$
Now let us substitute the obtained value of $d$ in equation (1).
$\begin{align}
& \Rightarrow 2a+3\left( -12 \right)=8 \\
& \Rightarrow 2a-36=8 \\
& \Rightarrow 2a=36+8 \\
& \Rightarrow 2a=44 \\
& \Rightarrow a=22 \\
\end{align}$
So, we finally get the values as $a=22$ and $d=-12$.
As we need to find the value of ${{S}_{10}}$, let us substitute $n=10$ in the formula of ${{S}_{n}}$. Then we get,
$\begin{align}
& \Rightarrow {{S}_{10}}=\dfrac{10}{2}\left( 2a+\left( 10-1 \right)d \right) \\
& \Rightarrow {{S}_{10}}=5\left( 2\left( 22 \right)+9\left( -12 \right) \right) \\
& \Rightarrow {{S}_{10}}=5\left( 44-108 \right) \\
& \Rightarrow {{S}_{10}}=5\left( -64 \right) \\
& \Rightarrow {{S}_{10}}=-320 \\
\end{align}$
So, we get the value of ${{S}_{10}}$ as -320.
Hence the answer is Option A.
Note: While solving this problem one might write the sum of 10 terms in A.P as ${{S}_{10}}={{S}_{4}}+{{S}_{6}}$. But it is wrong as in ${{S}_{4}}$ and ${{S}_{6}}$ first four terms are common and the last four terms are not included in the sum.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

