
Let the limits are given as \[\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)=l\] and \[\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)=m\], then
(a) l exists but m does not
(b) m exists but l does not
(c) l and m both exist
(d) neither l nor m exists
Answer
613.8k+ views
Hint: Use basic rules of limit and inverse functions to evaluate the limit of given functions.
Complete step-by-step answer:
We have the functions \[{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)\] and \[{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)\]. We have to evaluate the limit for both functions around the point \[x=0\].
We will begin by evaluating the limits for the function \[\dfrac{x}{\sin x}\] and \[\dfrac{x}{\tan x}\].
We observe that \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}\] is of the form \[\dfrac{0}{0}\].
An indeterminate form is an expression involving two functions whose limit can’t be determined solely from the limits of the individual functions. We will use L’Hopital Rule to evaluate the limit of such forms which states that if \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{0}{0}\] then we have \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}\].
Substituting \[f\left( x \right)=x,g\left( x \right)=\sin x\] in the above formula and evaluating the limit around \[x=0\], we get \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( x \right)}{dx}}{\dfrac{d\left( \sin x \right)}{dx}}.....\left( 1 \right)\].
We know that differentiation of any function of the form \[y=a{{x}^{n}}\] is such that \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Substituting \[a=1,n=1\] in the above formula, we get \[\dfrac{d\left( x \right)}{dx}=1.....\left( 2 \right)\].
We know that differentiation of any function of the form \[y=\sin x\] is such that \[\dfrac{d\left( \sin x \right)}{dx}=\cos x.....\left( 3 \right)\].
Substituting equation \[\left( 2 \right)\] and \[\left( 3 \right)\] in equation \[\left( 1 \right)\], we get \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( x \right)}{dx}}{\dfrac{d\left( \sin x \right)}{dx}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos x}=1\].
Thus, we have \[\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( 1 \right)=0\].
Hence, we have \[l=0\].
We will now evaluate the limit for \[\dfrac{x}{\tan x}\].
We observe that \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\tan x}\] is of the form \[\dfrac{0}{0}\].
Hence, we will use L’Hopital Rule to evaluate the limit which states that if \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{0}{0}\] then we have \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}\].
Substituting \[f\left( x \right)=x,g\left( x \right)=\tan x\] in the above formula and evaluating the limit around \[x=0\], we get \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( x \right)}{dx}}{\dfrac{d\left( \tan x \right)}{dx}}.....\left( 4 \right)\].
We know that differentiation of any function of the form \[y=a{{x}^{n}}\] is such that \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Substituting \[a=1,n=1\] in the above formula, we get \[\dfrac{d\left( x \right)}{dx}=1.....\left( 5 \right)\].
We know that differentiation of any function of the form \[y=\tan x\] is such that \[\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x.....\left( 6 \right)\].
Substituting equation \[\left( 5 \right)\] and \[\left( 6 \right)\] in equation \[\left( 4 \right)\], we get \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\tan x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( x \right)}{dx}}{\dfrac{d\left( \tan x \right)}{dx}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{\sec }^{2}}x}=1\].
Thus, we have \[\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( 1 \right)=0\].
Hence, we have \[m=0\].
We observe that both the limits exist and are equal to 0, i.e., \[l=m=0\], which is option (c).
Note: It’s necessary to evaluate the limit of the basic functions involved instead of directly evaluating the exact limit of the function. Indeterminate forms of the functions include \[\dfrac{0}{0},\dfrac{\infty }{\infty },0\times \infty ,\infty -\infty ,{{0}^{0}},{{1}^{\infty }},{{\infty }^{0}}\].
Complete step-by-step answer:
We have the functions \[{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)\] and \[{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)\]. We have to evaluate the limit for both functions around the point \[x=0\].
We will begin by evaluating the limits for the function \[\dfrac{x}{\sin x}\] and \[\dfrac{x}{\tan x}\].
We observe that \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}\] is of the form \[\dfrac{0}{0}\].
An indeterminate form is an expression involving two functions whose limit can’t be determined solely from the limits of the individual functions. We will use L’Hopital Rule to evaluate the limit of such forms which states that if \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{0}{0}\] then we have \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}\].
Substituting \[f\left( x \right)=x,g\left( x \right)=\sin x\] in the above formula and evaluating the limit around \[x=0\], we get \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( x \right)}{dx}}{\dfrac{d\left( \sin x \right)}{dx}}.....\left( 1 \right)\].
We know that differentiation of any function of the form \[y=a{{x}^{n}}\] is such that \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Substituting \[a=1,n=1\] in the above formula, we get \[\dfrac{d\left( x \right)}{dx}=1.....\left( 2 \right)\].
We know that differentiation of any function of the form \[y=\sin x\] is such that \[\dfrac{d\left( \sin x \right)}{dx}=\cos x.....\left( 3 \right)\].
Substituting equation \[\left( 2 \right)\] and \[\left( 3 \right)\] in equation \[\left( 1 \right)\], we get \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( x \right)}{dx}}{\dfrac{d\left( \sin x \right)}{dx}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos x}=1\].
Thus, we have \[\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( 1 \right)=0\].
Hence, we have \[l=0\].
We will now evaluate the limit for \[\dfrac{x}{\tan x}\].
We observe that \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\tan x}\] is of the form \[\dfrac{0}{0}\].
Hence, we will use L’Hopital Rule to evaluate the limit which states that if \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{0}{0}\] then we have \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}=\dfrac{f'\left( a \right)}{g'\left( a \right)}\].
Substituting \[f\left( x \right)=x,g\left( x \right)=\tan x\] in the above formula and evaluating the limit around \[x=0\], we get \[\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\Rightarrow \underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( x \right)}{dx}}{\dfrac{d\left( \tan x \right)}{dx}}.....\left( 4 \right)\].
We know that differentiation of any function of the form \[y=a{{x}^{n}}\] is such that \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Substituting \[a=1,n=1\] in the above formula, we get \[\dfrac{d\left( x \right)}{dx}=1.....\left( 5 \right)\].
We know that differentiation of any function of the form \[y=\tan x\] is such that \[\dfrac{d\left( \tan x \right)}{dx}={{\sec }^{2}}x.....\left( 6 \right)\].
Substituting equation \[\left( 5 \right)\] and \[\left( 6 \right)\] in equation \[\left( 4 \right)\], we get \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\tan x}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( x \right)}{dx}}{\dfrac{d\left( \tan x \right)}{dx}}=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{\sec }^{2}}x}=1\].
Thus, we have \[\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( 1 \right)=0\].
Hence, we have \[m=0\].
We observe that both the limits exist and are equal to 0, i.e., \[l=m=0\], which is option (c).
Note: It’s necessary to evaluate the limit of the basic functions involved instead of directly evaluating the exact limit of the function. Indeterminate forms of the functions include \[\dfrac{0}{0},\dfrac{\infty }{\infty },0\times \infty ,\infty -\infty ,{{0}^{0}},{{1}^{\infty }},{{\infty }^{0}}\].
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

