Let the eccentricity of the hyperbola $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ be reciprocal to that of the ellipse ${{x}^{2}}+4{{y}^{2}}=4$. If the hyperbola passes through a focus of the ellipse, then
(a) the equation of hyperbola is $\dfrac {{{x}^{2}}}{3}-\dfrac{{{y}^{2}}}{2}=1$
(b) A focus of hyperbola is $\left( 2,0 \right)$
(c) the eccentricity of hyperbola is $\sqrt{\dfrac{5}{3}}$
(d) the equation of hyperbola is ${{x}^{2}}-3{{y}^{2}}=3$
Answer
Verified
480.3k+ views
Hint: We can use formula for eccentricity and focus and hyperbola because in the given question we have a relation between the eccentricity of ellipse and hyperbola. Then we can use the focus of the ellipse to get the final answer.
Complete step-by-step solution:
In given question equation of ellipse is ${{x}^{2}}+4{{y}^{2}}=4$.
On dividing both sides from 4 to write it in standard form.
$\Rightarrow \dfrac{{{x}^{2}}+4{{y}^{2}}}{4}=\dfrac{4}{4}$
$\Rightarrow \dfrac{{{x}^{2}}}{4}+\dfrac{4{{y}^{2}}}{4}=1$
$\Rightarrow \dfrac{{{x}^{2}}}{4}+{{y}^{2}}=1$
On comparing with $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$
$\Rightarrow {{a}^{2}}=4,\,{{b}^{2}}=1$ where a is half of the major axis and b is half of the minor axis.
To calculate eccentricity of ellipse we can use ${{b}^{2}}={{a}^{2}}(1-{{e}^{2}})$
We can arrange it as
$\Rightarrow {{b}^{2}}={{a}^{2}}(1-{{e}^{2}})$
$\Rightarrow \dfrac{{{b}^{2}}}{{{a}^{2}}}=1-{{e}^{2}}$
$\Rightarrow {{e}^{2}}=1-\dfrac{{{b}^{2}}}{{{a}^{2}}}$
On substitute ${{a}^{2}}=4,\,{{b}^{2}}=1$
$\Rightarrow {{e}^{2}}=1-\dfrac{1}{4}$
$\Rightarrow {{e}^{2}}=\dfrac{3}{4}$
$\Rightarrow e=\pm \sqrt{\dfrac{3}{4}}$
$\Rightarrow e=\dfrac{\sqrt{3}}{2}\,or\,\dfrac{-\sqrt{3}}{2}$
But eccentricity of the ellipse always lies between 0 to 1.
Hence
$\Rightarrow e=\dfrac{\sqrt{3}}{2}$
As given in question eccentricity of a hyperbola is reciprocal of the eccentricity of the ellipse.
Let the equation of hyperbola is $\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1$
Hence eccentricity of hyperbola is $e=\dfrac{2}{\sqrt{3}}$
To calculate eccentricity of hyperbola we can use ${{b}_{1}}^{2}={{a}_{1}}^{2}({{e}^{2}}-1)$ where ${{a}_{1}}$ is the transverse axis of hyperbola and ${{b}_{1}}$ is conjungate axis of hyperbola
On substituting $e=\dfrac{2}{\sqrt{3}}$
$\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}-1 \right)$
$\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( \dfrac{4}{3}-1 \right)$
$\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( \dfrac{4-3}{3} \right)$
$\Rightarrow {{b}_{1}}^{2}=\dfrac{{{a}_{1}}^{2}}{3}$………………………………………….(i)
Co-ordinate of focus of ellipse is $\left( \pm ae,0 \right)$ if ${{a}^{2}}>{{b}^{2}}$.
From equation of ellipse $a=2,\,e=\dfrac{\sqrt{3}}{2}$
$\Rightarrow ae=2\times \dfrac{\sqrt{3}}{2}$
$\Rightarrow ae=\sqrt{3}$
Hence co-ordinate of focus of ellipse is $\left( \pm \sqrt{3},0 \right)$
As given, equation of hyperbola passes through focus of ellipse. Hence it will satisfy equation of hyperbola $\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1$
$\Rightarrow \dfrac{{{\left( \sqrt{3} \right)}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{\left( 0 \right)}^{2}}}{{{b}_{1}}^{2}}=1$
$\Rightarrow \dfrac{3}{{{a}_{1}}^{2}}-0=1$
$\Rightarrow \dfrac{3}{{{a}_{1}}^{2}}=1$
$\Rightarrow {{a}_{1}}^{2}=3$
On substituting ${{a}_{1}}^{2}=3$ in equation (i) ${{b}_{1}}^{2}=\dfrac{{{a}_{1}}^{2}}{3}$
$\Rightarrow {{b}_{1}}^{2}=\dfrac{3}{3}$
$\Rightarrow {{b}_{1}}^{2}=1$
Hence equation of hyperbola is by substituting value of ${{a}_{1}}^{2}$ and ${{b}_{1}}^{2}$
$\Rightarrow \dfrac{{{x}^{2}}}{3}-\dfrac{{{y}^{2}}}{1}=1$
We can simplify by taking L.C.M
$\Rightarrow \dfrac{{{x}^{2}}-3{{y}^{2}}}{3}=1$
$\Rightarrow {{x}^{2}}-3{{y}^{2}}=3$
In general focus of hyperbola is $\left( \pm {{a}_{1}}e,0 \right)$ if ${{a}_{1}}^{2}>{{b}_{1}}^{2}$.
For hyperbola $e=\dfrac{2}{\sqrt{3}},{{a}_{1}}=\sqrt{3}$
$\Rightarrow {{a}_{1}}e=\sqrt{3}\times \dfrac{2}{\sqrt{3}}$
$\Rightarrow {{a}_{1}}e=2$
Hence focus of hyperbola is $\left( \pm 2,0 \right)$.
So option b and d is correct.
Note: In general if equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ then eccentricity of ellipse can be calculated from relation ${{b}^{2}}={{a}^{2}}(1-{{e}^{2}})$. Co-ordinate of focus of ellipse is $\left( \pm ae,0 \right)$ if ${{a}^{2}}>{{b}^{2}}$.
If equation of hyperbola is $\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1$ then eccentricity of hyperbola can be calculated from relation ${{b}_{1}}^{2}={{a}_{1}}^{2}({{e}^{2}}-1)$.
In general eccentricity(e) of the conic section defines its shape and it is a non negative real number.
For ellipse,$0 < e < 1$
For hyperbola, $e >1$
In equations of ellipse and hyperbola if any variable is common then it has to be represented separately to avoid any error arising due to common variable used in the equation
Complete step-by-step solution:
In given question equation of ellipse is ${{x}^{2}}+4{{y}^{2}}=4$.
On dividing both sides from 4 to write it in standard form.
$\Rightarrow \dfrac{{{x}^{2}}+4{{y}^{2}}}{4}=\dfrac{4}{4}$
$\Rightarrow \dfrac{{{x}^{2}}}{4}+\dfrac{4{{y}^{2}}}{4}=1$
$\Rightarrow \dfrac{{{x}^{2}}}{4}+{{y}^{2}}=1$
On comparing with $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$
$\Rightarrow {{a}^{2}}=4,\,{{b}^{2}}=1$ where a is half of the major axis and b is half of the minor axis.
To calculate eccentricity of ellipse we can use ${{b}^{2}}={{a}^{2}}(1-{{e}^{2}})$
We can arrange it as
$\Rightarrow {{b}^{2}}={{a}^{2}}(1-{{e}^{2}})$
$\Rightarrow \dfrac{{{b}^{2}}}{{{a}^{2}}}=1-{{e}^{2}}$
$\Rightarrow {{e}^{2}}=1-\dfrac{{{b}^{2}}}{{{a}^{2}}}$
On substitute ${{a}^{2}}=4,\,{{b}^{2}}=1$
$\Rightarrow {{e}^{2}}=1-\dfrac{1}{4}$
$\Rightarrow {{e}^{2}}=\dfrac{3}{4}$
$\Rightarrow e=\pm \sqrt{\dfrac{3}{4}}$
$\Rightarrow e=\dfrac{\sqrt{3}}{2}\,or\,\dfrac{-\sqrt{3}}{2}$
But eccentricity of the ellipse always lies between 0 to 1.
Hence
$\Rightarrow e=\dfrac{\sqrt{3}}{2}$
As given in question eccentricity of a hyperbola is reciprocal of the eccentricity of the ellipse.
Let the equation of hyperbola is $\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1$
Hence eccentricity of hyperbola is $e=\dfrac{2}{\sqrt{3}}$
To calculate eccentricity of hyperbola we can use ${{b}_{1}}^{2}={{a}_{1}}^{2}({{e}^{2}}-1)$ where ${{a}_{1}}$ is the transverse axis of hyperbola and ${{b}_{1}}$ is conjungate axis of hyperbola
On substituting $e=\dfrac{2}{\sqrt{3}}$
$\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}-1 \right)$
$\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( \dfrac{4}{3}-1 \right)$
$\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( \dfrac{4-3}{3} \right)$
$\Rightarrow {{b}_{1}}^{2}=\dfrac{{{a}_{1}}^{2}}{3}$………………………………………….(i)
Co-ordinate of focus of ellipse is $\left( \pm ae,0 \right)$ if ${{a}^{2}}>{{b}^{2}}$.
From equation of ellipse $a=2,\,e=\dfrac{\sqrt{3}}{2}$
$\Rightarrow ae=2\times \dfrac{\sqrt{3}}{2}$
$\Rightarrow ae=\sqrt{3}$
Hence co-ordinate of focus of ellipse is $\left( \pm \sqrt{3},0 \right)$
As given, equation of hyperbola passes through focus of ellipse. Hence it will satisfy equation of hyperbola $\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1$
$\Rightarrow \dfrac{{{\left( \sqrt{3} \right)}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{\left( 0 \right)}^{2}}}{{{b}_{1}}^{2}}=1$
$\Rightarrow \dfrac{3}{{{a}_{1}}^{2}}-0=1$
$\Rightarrow \dfrac{3}{{{a}_{1}}^{2}}=1$
$\Rightarrow {{a}_{1}}^{2}=3$
On substituting ${{a}_{1}}^{2}=3$ in equation (i) ${{b}_{1}}^{2}=\dfrac{{{a}_{1}}^{2}}{3}$
$\Rightarrow {{b}_{1}}^{2}=\dfrac{3}{3}$
$\Rightarrow {{b}_{1}}^{2}=1$
Hence equation of hyperbola is by substituting value of ${{a}_{1}}^{2}$ and ${{b}_{1}}^{2}$
$\Rightarrow \dfrac{{{x}^{2}}}{3}-\dfrac{{{y}^{2}}}{1}=1$
We can simplify by taking L.C.M
$\Rightarrow \dfrac{{{x}^{2}}-3{{y}^{2}}}{3}=1$
$\Rightarrow {{x}^{2}}-3{{y}^{2}}=3$
In general focus of hyperbola is $\left( \pm {{a}_{1}}e,0 \right)$ if ${{a}_{1}}^{2}>{{b}_{1}}^{2}$.
For hyperbola $e=\dfrac{2}{\sqrt{3}},{{a}_{1}}=\sqrt{3}$
$\Rightarrow {{a}_{1}}e=\sqrt{3}\times \dfrac{2}{\sqrt{3}}$
$\Rightarrow {{a}_{1}}e=2$
Hence focus of hyperbola is $\left( \pm 2,0 \right)$.
So option b and d is correct.
Note: In general if equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ then eccentricity of ellipse can be calculated from relation ${{b}^{2}}={{a}^{2}}(1-{{e}^{2}})$. Co-ordinate of focus of ellipse is $\left( \pm ae,0 \right)$ if ${{a}^{2}}>{{b}^{2}}$.
If equation of hyperbola is $\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1$ then eccentricity of hyperbola can be calculated from relation ${{b}_{1}}^{2}={{a}_{1}}^{2}({{e}^{2}}-1)$.
In general eccentricity(e) of the conic section defines its shape and it is a non negative real number.
For ellipse,$0 < e < 1$
For hyperbola, $e >1$
In equations of ellipse and hyperbola if any variable is common then it has to be represented separately to avoid any error arising due to common variable used in the equation
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE
The members of the Municipal Corporation are elected class 11 social science CBSE
What is spore formation class 11 biology CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE