
Let the eccentricity of the hyperbola $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ be reciprocal to that of the ellipse ${{x}^{2}}+4{{y}^{2}}=4$. If the hyperbola passes through a focus of the ellipse, then
(a) the equation of hyperbola is $\dfrac {{{x}^{2}}}{3}-\dfrac{{{y}^{2}}}{2}=1$
(b) A focus of hyperbola is $\left( 2,0 \right)$
(c) the eccentricity of hyperbola is $\sqrt{\dfrac{5}{3}}$
(d) the equation of hyperbola is ${{x}^{2}}-3{{y}^{2}}=3$
Answer
579.3k+ views
Hint: We can use formula for eccentricity and focus and hyperbola because in the given question we have a relation between the eccentricity of ellipse and hyperbola. Then we can use the focus of the ellipse to get the final answer.
Complete step-by-step solution:
In given question equation of ellipse is ${{x}^{2}}+4{{y}^{2}}=4$.
On dividing both sides from 4 to write it in standard form.
$\Rightarrow \dfrac{{{x}^{2}}+4{{y}^{2}}}{4}=\dfrac{4}{4}$
$\Rightarrow \dfrac{{{x}^{2}}}{4}+\dfrac{4{{y}^{2}}}{4}=1$
$\Rightarrow \dfrac{{{x}^{2}}}{4}+{{y}^{2}}=1$
On comparing with $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$
$\Rightarrow {{a}^{2}}=4,\,{{b}^{2}}=1$ where a is half of the major axis and b is half of the minor axis.
To calculate eccentricity of ellipse we can use ${{b}^{2}}={{a}^{2}}(1-{{e}^{2}})$
We can arrange it as
$\Rightarrow {{b}^{2}}={{a}^{2}}(1-{{e}^{2}})$
$\Rightarrow \dfrac{{{b}^{2}}}{{{a}^{2}}}=1-{{e}^{2}}$
$\Rightarrow {{e}^{2}}=1-\dfrac{{{b}^{2}}}{{{a}^{2}}}$
On substitute ${{a}^{2}}=4,\,{{b}^{2}}=1$
$\Rightarrow {{e}^{2}}=1-\dfrac{1}{4}$
$\Rightarrow {{e}^{2}}=\dfrac{3}{4}$
$\Rightarrow e=\pm \sqrt{\dfrac{3}{4}}$
$\Rightarrow e=\dfrac{\sqrt{3}}{2}\,or\,\dfrac{-\sqrt{3}}{2}$
But eccentricity of the ellipse always lies between 0 to 1.
Hence
$\Rightarrow e=\dfrac{\sqrt{3}}{2}$
As given in question eccentricity of a hyperbola is reciprocal of the eccentricity of the ellipse.
Let the equation of hyperbola is $\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1$
Hence eccentricity of hyperbola is $e=\dfrac{2}{\sqrt{3}}$
To calculate eccentricity of hyperbola we can use ${{b}_{1}}^{2}={{a}_{1}}^{2}({{e}^{2}}-1)$ where ${{a}_{1}}$ is the transverse axis of hyperbola and ${{b}_{1}}$ is conjungate axis of hyperbola
On substituting $e=\dfrac{2}{\sqrt{3}}$
$\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}-1 \right)$
$\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( \dfrac{4}{3}-1 \right)$
$\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( \dfrac{4-3}{3} \right)$
$\Rightarrow {{b}_{1}}^{2}=\dfrac{{{a}_{1}}^{2}}{3}$………………………………………….(i)
Co-ordinate of focus of ellipse is $\left( \pm ae,0 \right)$ if ${{a}^{2}}>{{b}^{2}}$.
From equation of ellipse $a=2,\,e=\dfrac{\sqrt{3}}{2}$
$\Rightarrow ae=2\times \dfrac{\sqrt{3}}{2}$
$\Rightarrow ae=\sqrt{3}$
Hence co-ordinate of focus of ellipse is $\left( \pm \sqrt{3},0 \right)$
As given, equation of hyperbola passes through focus of ellipse. Hence it will satisfy equation of hyperbola $\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1$
$\Rightarrow \dfrac{{{\left( \sqrt{3} \right)}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{\left( 0 \right)}^{2}}}{{{b}_{1}}^{2}}=1$
$\Rightarrow \dfrac{3}{{{a}_{1}}^{2}}-0=1$
$\Rightarrow \dfrac{3}{{{a}_{1}}^{2}}=1$
$\Rightarrow {{a}_{1}}^{2}=3$
On substituting ${{a}_{1}}^{2}=3$ in equation (i) ${{b}_{1}}^{2}=\dfrac{{{a}_{1}}^{2}}{3}$
$\Rightarrow {{b}_{1}}^{2}=\dfrac{3}{3}$
$\Rightarrow {{b}_{1}}^{2}=1$
Hence equation of hyperbola is by substituting value of ${{a}_{1}}^{2}$ and ${{b}_{1}}^{2}$
$\Rightarrow \dfrac{{{x}^{2}}}{3}-\dfrac{{{y}^{2}}}{1}=1$
We can simplify by taking L.C.M
$\Rightarrow \dfrac{{{x}^{2}}-3{{y}^{2}}}{3}=1$
$\Rightarrow {{x}^{2}}-3{{y}^{2}}=3$
In general focus of hyperbola is $\left( \pm {{a}_{1}}e,0 \right)$ if ${{a}_{1}}^{2}>{{b}_{1}}^{2}$.
For hyperbola $e=\dfrac{2}{\sqrt{3}},{{a}_{1}}=\sqrt{3}$
$\Rightarrow {{a}_{1}}e=\sqrt{3}\times \dfrac{2}{\sqrt{3}}$
$\Rightarrow {{a}_{1}}e=2$
Hence focus of hyperbola is $\left( \pm 2,0 \right)$.
So option b and d is correct.
Note: In general if equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ then eccentricity of ellipse can be calculated from relation ${{b}^{2}}={{a}^{2}}(1-{{e}^{2}})$. Co-ordinate of focus of ellipse is $\left( \pm ae,0 \right)$ if ${{a}^{2}}>{{b}^{2}}$.
If equation of hyperbola is $\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1$ then eccentricity of hyperbola can be calculated from relation ${{b}_{1}}^{2}={{a}_{1}}^{2}({{e}^{2}}-1)$.
In general eccentricity(e) of the conic section defines its shape and it is a non negative real number.
For ellipse,$0 < e < 1$
For hyperbola, $e >1$
In equations of ellipse and hyperbola if any variable is common then it has to be represented separately to avoid any error arising due to common variable used in the equation
Complete step-by-step solution:
In given question equation of ellipse is ${{x}^{2}}+4{{y}^{2}}=4$.
On dividing both sides from 4 to write it in standard form.
$\Rightarrow \dfrac{{{x}^{2}}+4{{y}^{2}}}{4}=\dfrac{4}{4}$
$\Rightarrow \dfrac{{{x}^{2}}}{4}+\dfrac{4{{y}^{2}}}{4}=1$
$\Rightarrow \dfrac{{{x}^{2}}}{4}+{{y}^{2}}=1$
On comparing with $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$
$\Rightarrow {{a}^{2}}=4,\,{{b}^{2}}=1$ where a is half of the major axis and b is half of the minor axis.
To calculate eccentricity of ellipse we can use ${{b}^{2}}={{a}^{2}}(1-{{e}^{2}})$
We can arrange it as
$\Rightarrow {{b}^{2}}={{a}^{2}}(1-{{e}^{2}})$
$\Rightarrow \dfrac{{{b}^{2}}}{{{a}^{2}}}=1-{{e}^{2}}$
$\Rightarrow {{e}^{2}}=1-\dfrac{{{b}^{2}}}{{{a}^{2}}}$
On substitute ${{a}^{2}}=4,\,{{b}^{2}}=1$
$\Rightarrow {{e}^{2}}=1-\dfrac{1}{4}$
$\Rightarrow {{e}^{2}}=\dfrac{3}{4}$
$\Rightarrow e=\pm \sqrt{\dfrac{3}{4}}$
$\Rightarrow e=\dfrac{\sqrt{3}}{2}\,or\,\dfrac{-\sqrt{3}}{2}$
But eccentricity of the ellipse always lies between 0 to 1.
Hence
$\Rightarrow e=\dfrac{\sqrt{3}}{2}$
As given in question eccentricity of a hyperbola is reciprocal of the eccentricity of the ellipse.
Let the equation of hyperbola is $\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1$
Hence eccentricity of hyperbola is $e=\dfrac{2}{\sqrt{3}}$
To calculate eccentricity of hyperbola we can use ${{b}_{1}}^{2}={{a}_{1}}^{2}({{e}^{2}}-1)$ where ${{a}_{1}}$ is the transverse axis of hyperbola and ${{b}_{1}}$ is conjungate axis of hyperbola
On substituting $e=\dfrac{2}{\sqrt{3}}$
$\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( {{\left( \dfrac{2}{\sqrt{3}} \right)}^{2}}-1 \right)$
$\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( \dfrac{4}{3}-1 \right)$
$\Rightarrow {{b}_{1}}^{2}={{a}_{1}}^{2}\left( \dfrac{4-3}{3} \right)$
$\Rightarrow {{b}_{1}}^{2}=\dfrac{{{a}_{1}}^{2}}{3}$………………………………………….(i)
Co-ordinate of focus of ellipse is $\left( \pm ae,0 \right)$ if ${{a}^{2}}>{{b}^{2}}$.
From equation of ellipse $a=2,\,e=\dfrac{\sqrt{3}}{2}$
$\Rightarrow ae=2\times \dfrac{\sqrt{3}}{2}$
$\Rightarrow ae=\sqrt{3}$
Hence co-ordinate of focus of ellipse is $\left( \pm \sqrt{3},0 \right)$
As given, equation of hyperbola passes through focus of ellipse. Hence it will satisfy equation of hyperbola $\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1$
$\Rightarrow \dfrac{{{\left( \sqrt{3} \right)}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{\left( 0 \right)}^{2}}}{{{b}_{1}}^{2}}=1$
$\Rightarrow \dfrac{3}{{{a}_{1}}^{2}}-0=1$
$\Rightarrow \dfrac{3}{{{a}_{1}}^{2}}=1$
$\Rightarrow {{a}_{1}}^{2}=3$
On substituting ${{a}_{1}}^{2}=3$ in equation (i) ${{b}_{1}}^{2}=\dfrac{{{a}_{1}}^{2}}{3}$
$\Rightarrow {{b}_{1}}^{2}=\dfrac{3}{3}$
$\Rightarrow {{b}_{1}}^{2}=1$
Hence equation of hyperbola is by substituting value of ${{a}_{1}}^{2}$ and ${{b}_{1}}^{2}$
$\Rightarrow \dfrac{{{x}^{2}}}{3}-\dfrac{{{y}^{2}}}{1}=1$
We can simplify by taking L.C.M
$\Rightarrow \dfrac{{{x}^{2}}-3{{y}^{2}}}{3}=1$
$\Rightarrow {{x}^{2}}-3{{y}^{2}}=3$
In general focus of hyperbola is $\left( \pm {{a}_{1}}e,0 \right)$ if ${{a}_{1}}^{2}>{{b}_{1}}^{2}$.
For hyperbola $e=\dfrac{2}{\sqrt{3}},{{a}_{1}}=\sqrt{3}$
$\Rightarrow {{a}_{1}}e=\sqrt{3}\times \dfrac{2}{\sqrt{3}}$
$\Rightarrow {{a}_{1}}e=2$
Hence focus of hyperbola is $\left( \pm 2,0 \right)$.
So option b and d is correct.
Note: In general if equation of ellipse is $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ then eccentricity of ellipse can be calculated from relation ${{b}^{2}}={{a}^{2}}(1-{{e}^{2}})$. Co-ordinate of focus of ellipse is $\left( \pm ae,0 \right)$ if ${{a}^{2}}>{{b}^{2}}$.
If equation of hyperbola is $\dfrac{{{x}^{2}}}{{{a}_{1}}^{2}}-\dfrac{{{y}^{2}}}{{{b}_{1}}^{2}}=1$ then eccentricity of hyperbola can be calculated from relation ${{b}_{1}}^{2}={{a}_{1}}^{2}({{e}^{2}}-1)$.
In general eccentricity(e) of the conic section defines its shape and it is a non negative real number.
For ellipse,$0 < e < 1$
For hyperbola, $e >1$
In equations of ellipse and hyperbola if any variable is common then it has to be represented separately to avoid any error arising due to common variable used in the equation
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

