
Let S be the sum, P be the product and R be the sum of reciprocal of n terms in a G.P. Then ${P^2}{R^n}:{S^n}$ is equal to
A) $1:1$
B) ${\left( {{\text{common ratio}}} \right)^n}:1$
C) ${\left( {{\text{first term}}} \right)^2}:{\left( {{\text{common ratio}}} \right)^5}$
D) None of these
Answer
475.5k+ views
Hint: In this question take a series whose terms are in the geometric progression that is $a,ar,a{r^2},a{r^3}, \ldots \ldots \ldots ,a{r^{n - 1}}$. Find the sum of the series using the direct formula for the sum of n terms of G.P, $S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$, then find the product of the terms of this series and then the sum of reciprocal, to prove the required.
Complete step-by-step solution:
Let the n terms of G.P be,
$a,ar,a{r^2},a{r^3}, \ldots \ldots \ldots ,a{r^{n - 1}}$
Where $a$ is the first term,
$r$ is the common ratio.
Now it is given that S is the sum of n terms of a G.P,
$ \Rightarrow S = a + ar + a{r^2} + a{r^3} + \ldots \ldots \ldots + a{r^{n - 1}}$
Now as we know that the sum of n terms of a G.P is given by,
$ \Rightarrow S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$................….. (A)
Now take ${n^{th}}$ power on both sides we have,
$ \Rightarrow {S^n} = {\left( {\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}} \right)^n}$
Simplify the terms,
$ \Rightarrow {S^n} = \dfrac{{{a^n}{{\left( {{r^n} - 1} \right)}^n}}}{{{{\left( {r - 1} \right)}^n}}}$..............….. (1)
Now it is given that P is the product of n terms of a G.P,
$ \Rightarrow P = a \times ar \times a{r^2} \times a{r^3} \times \ldots \ldots \ldots \times a{r^{n - 1}}$
Now as we see that $a$ is multiplied by n times then,
$ \Rightarrow P = {a^n}\left( {1 \times r \times {r^2} \times {r^3} \times \ldots \ldots \ldots \times {r^{n - 1}}} \right)$
Now as we see that base $r$ is the same so powers of $r$ are all added up then,
$ \Rightarrow P = {a^n}\left( {{r^{1 + 2 + 3 + \ldots \ldots + n - 1}}} \right)$
Now as we know the sum of the first natural number,
$1 + 2 + 3 + \ldots \ldots \ldots + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
As the last term of power is $\left( {n - 1} \right)$. Replace $n$ with $\left( {n - 1} \right)$ in the equation,
$ \Rightarrow P = {a^n}\left( {{r^{\dfrac{{\left( {n - 1} \right)\left( {n - 1 + 1} \right)}}{2}}}} \right)$
Simplify the term,
$ \Rightarrow P = {a^n}\left( {{r^{\dfrac{{n\left( {n - 1} \right)}}{2}}}} \right)$
Now square both sides,
$ \Rightarrow {P^2} = {\left( {{a^n}\left( {{r^{\dfrac{{n\left( {n - 1} \right)}}{2}}}} \right)} \right)^2}$
Simplify the terms,
$ \Rightarrow {P^2} = {a^{2n}}{r^{n\left( {n - 1} \right)}}$ …………………..….. (2)
Now it is given that R is the sum of reciprocal of n terms of a G.P,
$ \Rightarrow R = \dfrac{1}{a} + \dfrac{1}{{ar}} + \dfrac{1}{{a{r^2}}} + \ldots \ldots \ldots + \dfrac{1}{{a{r^{n - 1}}}}$
Now from equation A replace $a$ with $\dfrac{1}{a}$ and replace $r$ with $\dfrac{1}{r}$ we have,
$ \Rightarrow R = \dfrac{{\dfrac{1}{a}\left( {{{\left( {\dfrac{1}{r}} \right)}^n} - 1} \right)}}{{\dfrac{1}{r} - 1}}$
Take LCM in both numerator and denominator,
$ \Rightarrow R = \dfrac{{\dfrac{1}{a}\left( {\dfrac{{1 - {r^n}}}{{{r^n}}}} \right)}}{{\dfrac{{1 - r}}{r}}}$
Simplify the terms,
$ \Rightarrow R = \dfrac{{\left( {1 - {r^n}} \right)}}{{a{r^{n - 1}}\left( {1 - r} \right)}}$
Multiply numerator and denominator by -1,
$ \Rightarrow R = \dfrac{{\left( {1 - {r^n}} \right)}}{{a{r^{n - 1}}\left( {1 - r} \right)}} \times \dfrac{{ - 1}}{{ - 1}}$
Simplify the terms,
$ \Rightarrow R = \dfrac{{\left( {{r^n} - 1} \right)}}{{a{r^{n - 1}}\left( {r - 1} \right)}}$
Now take ${n^{th}}$ the power of R we have,
$ \Rightarrow {R^n} = {\left( {\dfrac{{\left( {{r^n} - 1} \right)}}{{a{r^{n - 1}}\left( {r - 1} \right)}}} \right)^n}$
Simplify the terms,
$ \Rightarrow {R^n} = \dfrac{{{{\left( {{r^n} - 1} \right)}^n}}}{{{a^n}{r^{n\left( {n - 1} \right)}}{{\left( {r - 1} \right)}^n}}}$ ….. (3)
Now find the value of ${P^2}{R^n}$ by multiplying the equation (2) and (3),
$ \Rightarrow {P^2}{R^n} = {a^{2n}}{r^{n\left( {n - 1} \right)}} \times \dfrac{{{{\left( {{r^n} - 1} \right)}^n}}}{{{a^n}{r^{n\left( {n - 1} \right)}}{{\left( {r - 1} \right)}^n}}}$
Cancel out the common factors,
$ \Rightarrow {P^2}{R^n} = {a^n} \times \dfrac{{{{\left( {{r^n} - 1} \right)}^n}}}{{{{\left( {r - 1} \right)}^n}}}$
Now, from equation (1),
$ \Rightarrow {P^2}{R^n} = {S^n}$
Divide both sides by ${S^n}$,
$ \Rightarrow \dfrac{{{P^2}{R^n}}}{{{S^n}}} = \dfrac{{{S^n}}}{{{S^n}}}$
Cancel out the common factors,
$\therefore \dfrac{{{P^2}{R^n}}}{{{S^n}}} = 1$
Thus, ${P^2}{R^n}:{S^n}$ is equal to 1.
Hence, option (A) is the correct answer.
Note: A series is said to be in G.P if the common ratio that is the ratio of any two consecutive terms of that series remains constant. It is always advised to remember the direct formula of some frequently used series like G.P and A.P, as it helps save a lot of time.
Complete step-by-step solution:
Let the n terms of G.P be,
$a,ar,a{r^2},a{r^3}, \ldots \ldots \ldots ,a{r^{n - 1}}$
Where $a$ is the first term,
$r$ is the common ratio.
Now it is given that S is the sum of n terms of a G.P,
$ \Rightarrow S = a + ar + a{r^2} + a{r^3} + \ldots \ldots \ldots + a{r^{n - 1}}$
Now as we know that the sum of n terms of a G.P is given by,
$ \Rightarrow S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}$................….. (A)
Now take ${n^{th}}$ power on both sides we have,
$ \Rightarrow {S^n} = {\left( {\dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}} \right)^n}$
Simplify the terms,
$ \Rightarrow {S^n} = \dfrac{{{a^n}{{\left( {{r^n} - 1} \right)}^n}}}{{{{\left( {r - 1} \right)}^n}}}$..............….. (1)
Now it is given that P is the product of n terms of a G.P,
$ \Rightarrow P = a \times ar \times a{r^2} \times a{r^3} \times \ldots \ldots \ldots \times a{r^{n - 1}}$
Now as we see that $a$ is multiplied by n times then,
$ \Rightarrow P = {a^n}\left( {1 \times r \times {r^2} \times {r^3} \times \ldots \ldots \ldots \times {r^{n - 1}}} \right)$
Now as we see that base $r$ is the same so powers of $r$ are all added up then,
$ \Rightarrow P = {a^n}\left( {{r^{1 + 2 + 3 + \ldots \ldots + n - 1}}} \right)$
Now as we know the sum of the first natural number,
$1 + 2 + 3 + \ldots \ldots \ldots + n = \dfrac{{n\left( {n + 1} \right)}}{2}$
As the last term of power is $\left( {n - 1} \right)$. Replace $n$ with $\left( {n - 1} \right)$ in the equation,
$ \Rightarrow P = {a^n}\left( {{r^{\dfrac{{\left( {n - 1} \right)\left( {n - 1 + 1} \right)}}{2}}}} \right)$
Simplify the term,
$ \Rightarrow P = {a^n}\left( {{r^{\dfrac{{n\left( {n - 1} \right)}}{2}}}} \right)$
Now square both sides,
$ \Rightarrow {P^2} = {\left( {{a^n}\left( {{r^{\dfrac{{n\left( {n - 1} \right)}}{2}}}} \right)} \right)^2}$
Simplify the terms,
$ \Rightarrow {P^2} = {a^{2n}}{r^{n\left( {n - 1} \right)}}$ …………………..….. (2)
Now it is given that R is the sum of reciprocal of n terms of a G.P,
$ \Rightarrow R = \dfrac{1}{a} + \dfrac{1}{{ar}} + \dfrac{1}{{a{r^2}}} + \ldots \ldots \ldots + \dfrac{1}{{a{r^{n - 1}}}}$
Now from equation A replace $a$ with $\dfrac{1}{a}$ and replace $r$ with $\dfrac{1}{r}$ we have,
$ \Rightarrow R = \dfrac{{\dfrac{1}{a}\left( {{{\left( {\dfrac{1}{r}} \right)}^n} - 1} \right)}}{{\dfrac{1}{r} - 1}}$
Take LCM in both numerator and denominator,
$ \Rightarrow R = \dfrac{{\dfrac{1}{a}\left( {\dfrac{{1 - {r^n}}}{{{r^n}}}} \right)}}{{\dfrac{{1 - r}}{r}}}$
Simplify the terms,
$ \Rightarrow R = \dfrac{{\left( {1 - {r^n}} \right)}}{{a{r^{n - 1}}\left( {1 - r} \right)}}$
Multiply numerator and denominator by -1,
$ \Rightarrow R = \dfrac{{\left( {1 - {r^n}} \right)}}{{a{r^{n - 1}}\left( {1 - r} \right)}} \times \dfrac{{ - 1}}{{ - 1}}$
Simplify the terms,
$ \Rightarrow R = \dfrac{{\left( {{r^n} - 1} \right)}}{{a{r^{n - 1}}\left( {r - 1} \right)}}$
Now take ${n^{th}}$ the power of R we have,
$ \Rightarrow {R^n} = {\left( {\dfrac{{\left( {{r^n} - 1} \right)}}{{a{r^{n - 1}}\left( {r - 1} \right)}}} \right)^n}$
Simplify the terms,
$ \Rightarrow {R^n} = \dfrac{{{{\left( {{r^n} - 1} \right)}^n}}}{{{a^n}{r^{n\left( {n - 1} \right)}}{{\left( {r - 1} \right)}^n}}}$ ….. (3)
Now find the value of ${P^2}{R^n}$ by multiplying the equation (2) and (3),
$ \Rightarrow {P^2}{R^n} = {a^{2n}}{r^{n\left( {n - 1} \right)}} \times \dfrac{{{{\left( {{r^n} - 1} \right)}^n}}}{{{a^n}{r^{n\left( {n - 1} \right)}}{{\left( {r - 1} \right)}^n}}}$
Cancel out the common factors,
$ \Rightarrow {P^2}{R^n} = {a^n} \times \dfrac{{{{\left( {{r^n} - 1} \right)}^n}}}{{{{\left( {r - 1} \right)}^n}}}$
Now, from equation (1),
$ \Rightarrow {P^2}{R^n} = {S^n}$
Divide both sides by ${S^n}$,
$ \Rightarrow \dfrac{{{P^2}{R^n}}}{{{S^n}}} = \dfrac{{{S^n}}}{{{S^n}}}$
Cancel out the common factors,
$\therefore \dfrac{{{P^2}{R^n}}}{{{S^n}}} = 1$
Thus, ${P^2}{R^n}:{S^n}$ is equal to 1.
Hence, option (A) is the correct answer.
Note: A series is said to be in G.P if the common ratio that is the ratio of any two consecutive terms of that series remains constant. It is always advised to remember the direct formula of some frequently used series like G.P and A.P, as it helps save a lot of time.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
