
Let \[P = \{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \} \] and \[Q = \{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \} \] be two sets then
A. \[P \subset Q\]and \[Q - P \ne \phi \]
B.\[Q \not\subset P\]
C. \[P \not\subset Q\]
D. \[P = Q\]
Answer
567.3k+ views
Hint: We solve for the values of \[\theta \] from both sets. Shift all similar functions on one side and calculate the value of tangent of angle in both sets. Rationalize the term formed in the second set. Check if the values of P and Q are equal, unequal, subsets or not.
* \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
Complete step by step answer:
We are given two sets \[P = \{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \} \]and \[Q = \{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \} \]
We first solve for set P
\[P = \{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \} \]
\[ \Rightarrow \sin \theta - \cos \theta = \sqrt 2 \cos \theta \]
Shift all cosine values to RHS
\[ \Rightarrow \sin \theta = \sqrt 2 \cos \theta + \cos \theta \]
\[ \Rightarrow \sin \theta = (\sqrt 2 + 1)\cos \theta \]
Divide both sides by cosine of angle
\[ \Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{(\sqrt 2 + 1)\cos \theta }}{{\cos \theta }}\]
Cancel same terms from numerator and denominator
\[ \Rightarrow \tan \theta = (\sqrt 2 + 1)\]
Take inverse tangent on both sides of the equation
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}(\sqrt 2 + 1)\]
Cancel inverse function by function
\[ \Rightarrow \theta = {\tan ^{ - 1}}(\sqrt 2 + 1)\] … (1)
Now we solve for set Q
\[Q = \{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \} \]
\[ \Rightarrow \sin \theta + \cos \theta = \sqrt 2 \sin \theta \]
Shift all sine values to RHS
\[ \Rightarrow \cos \theta = \sqrt 2 \sin \theta - \sin \theta \]
\[ \Rightarrow \cos \theta = (\sqrt 2 - 1)\sin \theta \]
Divide both sides by sine of angle
\[ \Rightarrow \dfrac{{\cos \theta }}{{\sin \theta }} = \dfrac{{(\sqrt 2 - 1)\sin \theta }}{{\sin \theta }}\]
Take reciprocal on both sides
\[ \Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin \theta }}{{(\sqrt 2 - 1)\sin \theta }}\]
Cancel same terms from numerator and denominator
\[ \Rightarrow \tan \theta = \dfrac{1}{{(\sqrt 2 - 1)}}\]
Rationalize RHS
\[ \Rightarrow \tan \theta = \dfrac{1}{{\sqrt 2 - 1}} \times \dfrac{{\sqrt 2 + 1}}{{\sqrt 2 + 1}}\]
Use the formula \[(a - b)(a + b) = {a^2} - {b^2}\]
\[ \Rightarrow \tan \theta = \dfrac{{\sqrt 2 + 1}}{{{{\left( {\sqrt 2 } \right)}^2} - {{\left( 1 \right)}^2}}}\]
\[ \Rightarrow \tan \theta = \dfrac{{\sqrt 2 + 1}}{{2 - 1}}\]
\[ \Rightarrow \tan \theta = \dfrac{{\sqrt 2 + 1}}{1}\]
\[ \Rightarrow \tan \theta = \sqrt 2 + 1\]
Take inverse tangent on both sides of the equation
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}(\sqrt 2 + 1)\]
Cancel inverse function by function
\[ \Rightarrow \theta = {\tan ^{ - 1}}(\sqrt 2 + 1)\] … (2)
From both equations (1) and (2) we have \[\theta = {\tan ^{ - 1}}(\sqrt 2 + 1)\]
\[ \Rightarrow P = Q\]
\[\therefore \]Option D is correct.
Note: Many students make the mistake of leaving the value of tangent of angle in fraction form which is wrong, keep in mind we always have to have value in denominator not as an irrational number i.e. of kind under root, exponential form etc. Here we have terms under root in the denominator so we have to rationalize it in order to form an answer and then compare the values. Also, when taking inverse functions on both sides, we take the same functions inverse in order to cancel out a function and obtain the value of angle.
* \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
Complete step by step answer:
We are given two sets \[P = \{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \} \]and \[Q = \{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \} \]
We first solve for set P
\[P = \{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \} \]
\[ \Rightarrow \sin \theta - \cos \theta = \sqrt 2 \cos \theta \]
Shift all cosine values to RHS
\[ \Rightarrow \sin \theta = \sqrt 2 \cos \theta + \cos \theta \]
\[ \Rightarrow \sin \theta = (\sqrt 2 + 1)\cos \theta \]
Divide both sides by cosine of angle
\[ \Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{(\sqrt 2 + 1)\cos \theta }}{{\cos \theta }}\]
Cancel same terms from numerator and denominator
\[ \Rightarrow \tan \theta = (\sqrt 2 + 1)\]
Take inverse tangent on both sides of the equation
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}(\sqrt 2 + 1)\]
Cancel inverse function by function
\[ \Rightarrow \theta = {\tan ^{ - 1}}(\sqrt 2 + 1)\] … (1)
Now we solve for set Q
\[Q = \{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \} \]
\[ \Rightarrow \sin \theta + \cos \theta = \sqrt 2 \sin \theta \]
Shift all sine values to RHS
\[ \Rightarrow \cos \theta = \sqrt 2 \sin \theta - \sin \theta \]
\[ \Rightarrow \cos \theta = (\sqrt 2 - 1)\sin \theta \]
Divide both sides by sine of angle
\[ \Rightarrow \dfrac{{\cos \theta }}{{\sin \theta }} = \dfrac{{(\sqrt 2 - 1)\sin \theta }}{{\sin \theta }}\]
Take reciprocal on both sides
\[ \Rightarrow \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{{\sin \theta }}{{(\sqrt 2 - 1)\sin \theta }}\]
Cancel same terms from numerator and denominator
\[ \Rightarrow \tan \theta = \dfrac{1}{{(\sqrt 2 - 1)}}\]
Rationalize RHS
\[ \Rightarrow \tan \theta = \dfrac{1}{{\sqrt 2 - 1}} \times \dfrac{{\sqrt 2 + 1}}{{\sqrt 2 + 1}}\]
Use the formula \[(a - b)(a + b) = {a^2} - {b^2}\]
\[ \Rightarrow \tan \theta = \dfrac{{\sqrt 2 + 1}}{{{{\left( {\sqrt 2 } \right)}^2} - {{\left( 1 \right)}^2}}}\]
\[ \Rightarrow \tan \theta = \dfrac{{\sqrt 2 + 1}}{{2 - 1}}\]
\[ \Rightarrow \tan \theta = \dfrac{{\sqrt 2 + 1}}{1}\]
\[ \Rightarrow \tan \theta = \sqrt 2 + 1\]
Take inverse tangent on both sides of the equation
\[ \Rightarrow {\tan ^{ - 1}}\left( {\tan \theta } \right) = {\tan ^{ - 1}}(\sqrt 2 + 1)\]
Cancel inverse function by function
\[ \Rightarrow \theta = {\tan ^{ - 1}}(\sqrt 2 + 1)\] … (2)
From both equations (1) and (2) we have \[\theta = {\tan ^{ - 1}}(\sqrt 2 + 1)\]
\[ \Rightarrow P = Q\]
\[\therefore \]Option D is correct.
Note: Many students make the mistake of leaving the value of tangent of angle in fraction form which is wrong, keep in mind we always have to have value in denominator not as an irrational number i.e. of kind under root, exponential form etc. Here we have terms under root in the denominator so we have to rationalize it in order to form an answer and then compare the values. Also, when taking inverse functions on both sides, we take the same functions inverse in order to cancel out a function and obtain the value of angle.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

