
Let $p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}}$then $\log p$ is equal to:
$
a)\,2 \\
b)\,1 \\
c)\,\dfrac{1}{2} \\
d)\,\dfrac{1}{4} \\
$
Answer
579k+ views
Hint:By observing the equation we can see that the intermediate form ${1^\infty }$. So we solve it according to this
$\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}$where for $x \to 0\,f(x) \to 1$and for \[x \to 0\,\,\,g(x) \to \infty \]. Then
\[\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}\]
Complete step-by-step answer:
Given $p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}}$ $ \to (1)$
We can see that for $x \to {0^ + },1 + {\tan ^2}\sqrt x \to 1$and for $x \to {0^ + },\dfrac{1}{{2x}} \to \infty $
So for $x \to {0^ + },{(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} \to {1^\infty }$
So it is an intermediate form ${1^\infty }$.
And we know for ${1^\infty }$intermediate form $\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}$where for $x \to 0\,f(x) \to 1$and for \[x \to 0\,\,\,g(x) \to \infty \].
\[\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}\] $ \to (2)$
Now using (2) in (1) we get,
\[
p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{2x}}(1 + {{\tan }^2}\sqrt x - 1)}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2x}}}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2{{\sqrt x }^2}}}}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} {{\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)}^2} \times \dfrac{1}{2}}} \\
\]
Now using \[\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = 1\]. We get,
$
p = {e^{\dfrac{1}{2}(1)}} \\
p = {e^{\dfrac{1}{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (3) \\
$
Now we need to find the value of $\log p$, according to the question.
So taking log on both sides in (3), we get
$\log p = \log {e^{\dfrac{1}{2}}}$
Now using $\log {e^b} = b\log e = b(1) = b$
$\log p = \dfrac{1}{2}\log e = \dfrac{1}{2}$
So $\log p = \dfrac{1}{2}$
So, the correct answer is “Option C”.
Note:Using $\tan x = x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}} + .............$.
We can see that
\[
\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = \mathop {\lim }\limits_{x \to 0 + } \left( {\dfrac{{\sqrt x + \dfrac{{{{\sqrt x }^3}}}{3} + \dfrac{{2{{\sqrt x }^5}}}{{15}} + ...........}}{{\sqrt x }}} \right) \\
= \mathop {\lim }\limits_{x \to 0 + } \left( {1 + \dfrac{{{{\sqrt x }^2}}}{3} + \dfrac{{2{{\sqrt x }^4}}}{{15}} + ..........} \right) \\
= 1 \\
\]
This point is important to solve this question. And we take $\log $ with base $e$ and then ${\log _e}e = 1$. And will not take $\log $ with base $10$.
$\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}$where for $x \to 0\,f(x) \to 1$and for \[x \to 0\,\,\,g(x) \to \infty \]. Then
\[\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}\]
Complete step-by-step answer:
Given $p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}}$ $ \to (1)$
We can see that for $x \to {0^ + },1 + {\tan ^2}\sqrt x \to 1$and for $x \to {0^ + },\dfrac{1}{{2x}} \to \infty $
So for $x \to {0^ + },{(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} \to {1^\infty }$
So it is an intermediate form ${1^\infty }$.
And we know for ${1^\infty }$intermediate form $\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}$where for $x \to 0\,f(x) \to 1$and for \[x \to 0\,\,\,g(x) \to \infty \].
\[\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}\] $ \to (2)$
Now using (2) in (1) we get,
\[
p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{2x}}(1 + {{\tan }^2}\sqrt x - 1)}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2x}}}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2{{\sqrt x }^2}}}}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} {{\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)}^2} \times \dfrac{1}{2}}} \\
\]
Now using \[\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = 1\]. We get,
$
p = {e^{\dfrac{1}{2}(1)}} \\
p = {e^{\dfrac{1}{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (3) \\
$
Now we need to find the value of $\log p$, according to the question.
So taking log on both sides in (3), we get
$\log p = \log {e^{\dfrac{1}{2}}}$
Now using $\log {e^b} = b\log e = b(1) = b$
$\log p = \dfrac{1}{2}\log e = \dfrac{1}{2}$
So $\log p = \dfrac{1}{2}$
So, the correct answer is “Option C”.
Note:Using $\tan x = x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}} + .............$.
We can see that
\[
\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = \mathop {\lim }\limits_{x \to 0 + } \left( {\dfrac{{\sqrt x + \dfrac{{{{\sqrt x }^3}}}{3} + \dfrac{{2{{\sqrt x }^5}}}{{15}} + ...........}}{{\sqrt x }}} \right) \\
= \mathop {\lim }\limits_{x \to 0 + } \left( {1 + \dfrac{{{{\sqrt x }^2}}}{3} + \dfrac{{2{{\sqrt x }^4}}}{{15}} + ..........} \right) \\
= 1 \\
\]
This point is important to solve this question. And we take $\log $ with base $e$ and then ${\log _e}e = 1$. And will not take $\log $ with base $10$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

