Answer
Verified
463.2k+ views
Hint:By observing the equation we can see that the intermediate form ${1^\infty }$. So we solve it according to this
$\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}$where for $x \to 0\,f(x) \to 1$and for \[x \to 0\,\,\,g(x) \to \infty \]. Then
\[\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}\]
Complete step-by-step answer:
Given $p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}}$ $ \to (1)$
We can see that for $x \to {0^ + },1 + {\tan ^2}\sqrt x \to 1$and for $x \to {0^ + },\dfrac{1}{{2x}} \to \infty $
So for $x \to {0^ + },{(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} \to {1^\infty }$
So it is an intermediate form ${1^\infty }$.
And we know for ${1^\infty }$intermediate form $\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}$where for $x \to 0\,f(x) \to 1$and for \[x \to 0\,\,\,g(x) \to \infty \].
\[\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}\] $ \to (2)$
Now using (2) in (1) we get,
\[
p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{2x}}(1 + {{\tan }^2}\sqrt x - 1)}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2x}}}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2{{\sqrt x }^2}}}}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} {{\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)}^2} \times \dfrac{1}{2}}} \\
\]
Now using \[\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = 1\]. We get,
$
p = {e^{\dfrac{1}{2}(1)}} \\
p = {e^{\dfrac{1}{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (3) \\
$
Now we need to find the value of $\log p$, according to the question.
So taking log on both sides in (3), we get
$\log p = \log {e^{\dfrac{1}{2}}}$
Now using $\log {e^b} = b\log e = b(1) = b$
$\log p = \dfrac{1}{2}\log e = \dfrac{1}{2}$
So $\log p = \dfrac{1}{2}$
So, the correct answer is “Option C”.
Note:Using $\tan x = x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}} + .............$.
We can see that
\[
\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = \mathop {\lim }\limits_{x \to 0 + } \left( {\dfrac{{\sqrt x + \dfrac{{{{\sqrt x }^3}}}{3} + \dfrac{{2{{\sqrt x }^5}}}{{15}} + ...........}}{{\sqrt x }}} \right) \\
= \mathop {\lim }\limits_{x \to 0 + } \left( {1 + \dfrac{{{{\sqrt x }^2}}}{3} + \dfrac{{2{{\sqrt x }^4}}}{{15}} + ..........} \right) \\
= 1 \\
\]
This point is important to solve this question. And we take $\log $ with base $e$ and then ${\log _e}e = 1$. And will not take $\log $ with base $10$.
$\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}$where for $x \to 0\,f(x) \to 1$and for \[x \to 0\,\,\,g(x) \to \infty \]. Then
\[\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}\]
Complete step-by-step answer:
Given $p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}}$ $ \to (1)$
We can see that for $x \to {0^ + },1 + {\tan ^2}\sqrt x \to 1$and for $x \to {0^ + },\dfrac{1}{{2x}} \to \infty $
So for $x \to {0^ + },{(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} \to {1^\infty }$
So it is an intermediate form ${1^\infty }$.
And we know for ${1^\infty }$intermediate form $\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}}$where for $x \to 0\,f(x) \to 1$and for \[x \to 0\,\,\,g(x) \to \infty \].
\[\mathop {\lim }\limits_{x \to 0} {(f(x))^{g(x)}} = {e^{\mathop {\lim }\limits_{x \to 0 + } \dfrac{{(f(x) - 1)}}{{g(x)}}}}\] $ \to (2)$
Now using (2) in (1) we get,
\[
p = \mathop {\lim }\limits_{x \to 0 + } {(1 + {\tan ^2}\sqrt x )^{\dfrac{1}{{2x}}}} = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{2x}}(1 + {{\tan }^2}\sqrt x - 1)}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2x}}}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} \dfrac{{{{\tan }^2}\sqrt x }}{{2{{\sqrt x }^2}}}}} \\
p = {e^{\mathop {\lim }\limits_{x \to 0} {{\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)}^2} \times \dfrac{1}{2}}} \\
\]
Now using \[\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = 1\]. We get,
$
p = {e^{\dfrac{1}{2}(1)}} \\
p = {e^{\dfrac{1}{2}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (3) \\
$
Now we need to find the value of $\log p$, according to the question.
So taking log on both sides in (3), we get
$\log p = \log {e^{\dfrac{1}{2}}}$
Now using $\log {e^b} = b\log e = b(1) = b$
$\log p = \dfrac{1}{2}\log e = \dfrac{1}{2}$
So $\log p = \dfrac{1}{2}$
So, the correct answer is “Option C”.
Note:Using $\tan x = x + \dfrac{{{x^3}}}{3} + \dfrac{{2{x^5}}}{{15}} + .............$.
We can see that
\[
\mathop {\lim }\limits_{x \to 0 + } {\left( {\dfrac{{\tan \sqrt x }}{{\sqrt x }}} \right)^2} = \mathop {\lim }\limits_{x \to 0 + } \left( {\dfrac{{\sqrt x + \dfrac{{{{\sqrt x }^3}}}{3} + \dfrac{{2{{\sqrt x }^5}}}{{15}} + ...........}}{{\sqrt x }}} \right) \\
= \mathop {\lim }\limits_{x \to 0 + } \left( {1 + \dfrac{{{{\sqrt x }^2}}}{3} + \dfrac{{2{{\sqrt x }^4}}}{{15}} + ..........} \right) \\
= 1 \\
\]
This point is important to solve this question. And we take $\log $ with base $e$ and then ${\log _e}e = 1$. And will not take $\log $ with base $10$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE