
Let p be a non-singular matrix, and $I+p+{{p}^{2}}+.....+{{p}^{n}}=0$, then find ${{p}^{-1}}$.
A. \[I\]
B. ${{p}^{n+1}}$
C. \[{{p}^{n}}\]
D. \[\left( {{p}^{n+1}}-I \right)\left( p-I \right)\]
Answer
579k+ views
Hint: Since p is a non –singular matrix i.e. p is invertible. Multiply the LHS and RHS of the given equation by ${{p}^{-1}}$and simplify the obtained equation by using $I\times p=p\times I=p$. Where ‘I’ is an identity matrix and ‘p’ is only a matrix.
Complete step-by-step solution:
Inverse of a matrix A is defined as ${{A}^{-1}}$ such that they satisfy $A\times {{A}^{-1}}=I$. Where “I” is the identity matrix.
Let us assume the inverse of the given matrix ‘p’ as ${{p}^{-1}}$.
We have,
$I+p+{{p}^{2}}+.....+{{p}^{n}}=0$……………..(1)
Multiplying both sides of equation by ${{p}^{-1}}$, we will get,
$\begin{align}
& \Rightarrow {{p}^{-1}}\left( I+p+{{p}^{2}}+.....+{{p}^{n}} \right)=0.{{p}^{-1}} \\
& \Rightarrow I{{p}^{-1}}+{{p}^{-1}}p+{{p}^{-1}}{{p}^{2}}+.....{{p}^{-1}}{{p}^{n}}=0.{{p}^{-1}} \\
\end{align}$
As, we know $I.A=A$, so $I{{p}^{-1}}={{p}^{-1}}$ and for any matrix A, $A.{{A}^{-1}}=I$ if ${{A}^{-1}}$ is defined.
$\Rightarrow {{p}^{-1}}p=I$
We can write the above equation as following by using above properties:
$\begin{align}
& \Rightarrow {{p}^{-1}}+I+\left( {{p}^{-1}}.p \right)p+....\left( {{p}^{-1}}.p \right){{p}^{n-1}}=0 \\
& \Rightarrow {{p}^{-1}}+I+Ip+....I{{p}^{n-1}}=0 \\
\end{align}$
Taking ‘I’ common, we will get,
$\begin{align}
& \Rightarrow {{p}^{-1}}+I\left( I+p+{{p}^{2}}+.....+{{p}^{n-1}} \right)=0 \\
& \Rightarrow {{p}^{-1}}=-I\left( I+p+{{p}^{2}}+.....+{{p}^{n-1}} \right) \\
\end{align}$
According to equation (1),
$\begin{align}
& I+p+{{p}^{2}}+.....+{{p}^{n}}=0 \\
& \Rightarrow I+p+{{p}^{2}}+{{p}^{3}}+.....+{{p}^{n-1}}=-{{p}^{n}} \\
\end{align}$
Replacing $I+p+{{p}^{2}}+{{p}^{3}}+.....+{{p}^{n-1}}=-{{p}^{n}}$in above equation of ${{p}^{-1}}$, we will get,
\[\begin{align}
& {{p}^{-1}}=-I\left( -{{p}^{n}} \right) \\
& \Rightarrow {{p}^{-1}}=I{{p}^{n}} \\
\end{align}\]
As for any matrix $IA=A,I{{p}^{n}}={{p}^{n}}$
$\Rightarrow {{p}^{-1}}={{p}^{n}}$
Hence, the required value of ${{p}^{-1}}={{p}^{n}}$ and option (C) is the correct answer.
Note: When we got ${{p}^{-1}}=I+p+{{p}^{2}}+.....+{{p}^{n}}$, students can do mistake by applying GP here but we can’t apply formula of GP here as common ratio = p and ‘p’ is not a number, it is a matrix, calculation won’t be possible. If we apply formula for sum of GP here, we will get,
\[\text{sum of n terms =}\dfrac{a\times {{r}^{n-1}}}{r-1}\]
Here a = I, r = p
So, we will get $I+p+{{p}^{2}}+.....+{{p}^{n}}=\dfrac{I\times {{p}^{n-1}}}{p-1}$.
In the denominator, we are getting $p – 1$, ‘p’ is a matrix and ‘1’ is an integer and so we can’t calculate $p – 1.$
Complete step-by-step solution:
Inverse of a matrix A is defined as ${{A}^{-1}}$ such that they satisfy $A\times {{A}^{-1}}=I$. Where “I” is the identity matrix.
Let us assume the inverse of the given matrix ‘p’ as ${{p}^{-1}}$.
We have,
$I+p+{{p}^{2}}+.....+{{p}^{n}}=0$……………..(1)
Multiplying both sides of equation by ${{p}^{-1}}$, we will get,
$\begin{align}
& \Rightarrow {{p}^{-1}}\left( I+p+{{p}^{2}}+.....+{{p}^{n}} \right)=0.{{p}^{-1}} \\
& \Rightarrow I{{p}^{-1}}+{{p}^{-1}}p+{{p}^{-1}}{{p}^{2}}+.....{{p}^{-1}}{{p}^{n}}=0.{{p}^{-1}} \\
\end{align}$
As, we know $I.A=A$, so $I{{p}^{-1}}={{p}^{-1}}$ and for any matrix A, $A.{{A}^{-1}}=I$ if ${{A}^{-1}}$ is defined.
$\Rightarrow {{p}^{-1}}p=I$
We can write the above equation as following by using above properties:
$\begin{align}
& \Rightarrow {{p}^{-1}}+I+\left( {{p}^{-1}}.p \right)p+....\left( {{p}^{-1}}.p \right){{p}^{n-1}}=0 \\
& \Rightarrow {{p}^{-1}}+I+Ip+....I{{p}^{n-1}}=0 \\
\end{align}$
Taking ‘I’ common, we will get,
$\begin{align}
& \Rightarrow {{p}^{-1}}+I\left( I+p+{{p}^{2}}+.....+{{p}^{n-1}} \right)=0 \\
& \Rightarrow {{p}^{-1}}=-I\left( I+p+{{p}^{2}}+.....+{{p}^{n-1}} \right) \\
\end{align}$
According to equation (1),
$\begin{align}
& I+p+{{p}^{2}}+.....+{{p}^{n}}=0 \\
& \Rightarrow I+p+{{p}^{2}}+{{p}^{3}}+.....+{{p}^{n-1}}=-{{p}^{n}} \\
\end{align}$
Replacing $I+p+{{p}^{2}}+{{p}^{3}}+.....+{{p}^{n-1}}=-{{p}^{n}}$in above equation of ${{p}^{-1}}$, we will get,
\[\begin{align}
& {{p}^{-1}}=-I\left( -{{p}^{n}} \right) \\
& \Rightarrow {{p}^{-1}}=I{{p}^{n}} \\
\end{align}\]
As for any matrix $IA=A,I{{p}^{n}}={{p}^{n}}$
$\Rightarrow {{p}^{-1}}={{p}^{n}}$
Hence, the required value of ${{p}^{-1}}={{p}^{n}}$ and option (C) is the correct answer.
Note: When we got ${{p}^{-1}}=I+p+{{p}^{2}}+.....+{{p}^{n}}$, students can do mistake by applying GP here but we can’t apply formula of GP here as common ratio = p and ‘p’ is not a number, it is a matrix, calculation won’t be possible. If we apply formula for sum of GP here, we will get,
\[\text{sum of n terms =}\dfrac{a\times {{r}^{n-1}}}{r-1}\]
Here a = I, r = p
So, we will get $I+p+{{p}^{2}}+.....+{{p}^{n}}=\dfrac{I\times {{p}^{n-1}}}{p-1}$.
In the denominator, we are getting $p – 1$, ‘p’ is a matrix and ‘1’ is an integer and so we can’t calculate $p – 1.$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

