
Let $ \omega ={{e}^{i\dfrac{\pi }{3}}} $ and $ a,b,c,x,y,z $ be non-zero complex number such that
\[\begin{align}
& a+b+c=x \\
& a+b\omega +c{{\omega }^{2}}=y \\
& a+b{{\omega }^{2}}+c\omega =z \\
\end{align}\]
Then the value of $ \dfrac{{{\left| x \right|}^{2}}+{{\left| y \right|}^{2}}+{{\left| z \right|}^{2}}}{{{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}}} $ is;\[\]
Answer
568.5k+ views
Hint: We recall the cube roots of unity $ 1,\omega ={{e}^{i\dfrac{\pi }{3}}},{{\omega }^{2}}={{e}^{i\dfrac{2\pi }{3}}} $ and the relationship between them. We use the property of any complex number $ {{\left| z \right|}^{2}}=z\overline{z} $ to have $ {{\left| x \right|}^{2}}=x\overline{x},{{\left| y \right|}^{2}}=y\overline{y},{{\left| z \right|}^{2}}=z\overline{z} $ and put the expressions for $ x,y,z $ in terms of $ a,b,c $ and then expand. \[\]
Complete step by step answer:
We know that we represent the cube roots of unity as $ 1,\omega =-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}={{e}^{i\dfrac{\pi }{3}}},{{\omega }^{2}}=\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}={{e}^{i\dfrac{2\pi }{3}}} $ . We know that sum of cube roots of unity is zero that is
\[1+\omega +{{\omega }^{2}}=0\]
We also know that the power $ n $ on cube roots of unity returns as follows;
\[{{\omega }^{n}}=\left\{ \begin{matrix}
1 & \text{if }n\equiv 0\bmod \left( 3 \right) \\
\omega & \text{if }n\equiv 1\bmod \left( 3 \right) \\
{{\omega }^{2}} & \text{if }n\equiv 2\bmod \left( 3 \right) \\
\end{matrix} \right.\]
We know that the general form of a complex number is $ z=a+ib $ where $ a\in R $ is called the real part of $ z $ and $ b\in R $ is called the imaginary part of the complex number. We know that the modulus of a complex x number is defined as \[\left| z \right|=\left| a\pm ib \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}\]. We know the property that $ {{\left| z \right|}^{2}}=z\overline{z} $ . We also know the multiplicative and additive property of conjugate respectively as;
\[\begin{align}
& \overline{xy}=\overline{x}\cdot \overline{y} \\
& \overline{x+y+z}=\overline{x}+\overline{y}+\overline{z} \\
\end{align}\]
So we use the above property on the cube roots of unity and have;
\[\overline{\omega }={{\omega }^{2}},\overline{{{\omega }^{2}}}=\omega \]
We are give in the question the cube root of unity $ \omega ={{e}^{i\dfrac{\pi }{3}}} $ that $ a,b,c,x,y,z $ are non-zero complex numbers such that,
\[\begin{align}
& a+b+c=x \\
& a+b\omega +c{{\omega }^{2}}=y \\
& a+b{{\omega }^{2}}+c\omega =z \\
\end{align}\]
We use the property of $ {{\left| z \right|}^{2}}=z\overline{z} $ to have;
\[{{\left| x \right|}^{2}}=x\overline{x},{{\left| y \right|}^{2}}=y\overline{y},{{\left| z \right|}^{2}}=z\overline{z}\]
So we put the given expressions in $ {{\left| x \right|}^{2}} $ in terms of $ a,b,c $ for the numerators of the expression to be evaluated and have;
\[{{\left| x \right|}^{2}}=x\overline{x}=\left( a+b+c \right)\left( \overline{a+b+c} \right)\]
We use additive property of conjugate to have;
\[\begin{align}
& \Rightarrow {{\left| x \right|}^{2}}=\left( a+b+c \right)\left( \overline{a}+\overline{b}+\overline{c} \right) \\
& \Rightarrow {{\left| x \right|}^{2}}=a\overline{a}+b\overline{b}+c\overline{c}+a\overline{b}+a\overline{c}+\overline{a}b+\overline{b}c+\overline{a}c+a\overline{c} \\
\end{align}\]
We use the property $ {{\left| z \right|}^{2}}=z\overline{z} $ to have;
\[\Rightarrow {{\left| x \right|}^{2}}={{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}}+a\overline{b}+\overline{a}b+\overline{b}c+\overline{b}c+a\overline{c}+\overline{a}c.........\left( 1 \right)\]
Similarly we evaluate $ {{\left| y \right|}^{2}} $ by putting $ y=a+b\omega +c{{\omega }^{2}} $ to have;
\[{{\left| y \right|}^{2}}=y\overline{y}=\left( a+b\omega +c{{\omega }^{2}} \right)\left( \overline{a+b\omega +c{{\omega }^{2}}} \right)\]
We use additive and multiplicative property of conjugate to have;
\[\begin{align}
& \Rightarrow {{\left| y \right|}^{2}}=\left( a+b\omega +c{{\omega }^{2}} \right)\left( \overline{a}+\overline{b}\overline{\omega }+\overline{c}\overline{{{\omega }^{2}}} \right) \\
& \Rightarrow {{\left| y \right|}^{2}}=\left( a+b\omega +c{{\omega }^{2}} \right)\left( \overline{a}+\overline{b}{{\omega }^{2}}+\overline{c}\omega \right) \\
& \Rightarrow {{\left| y \right|}^{2}}=a\overline{a}+a\overline{b}{{\omega }^{2}}+a\overline{c}\omega +\overline{a}b\omega +b\overline{b}{{\omega }^{3}}+b\overline{c}{{\omega }^{2}}+\overline{a}c{{\omega }^{2}}+\overline{b}c{{\omega }^{2}}+c\overline{c}{{\omega }^{3}} \\
\end{align}\]
We put $ {{\omega }^{3}}=1 $ in the above step to have;
\[\Rightarrow {{\left| y \right|}^{2}}={{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}}+a\overline{b}{{\omega }^{2}}+\overline{a}b\omega +b\overline{c}{{\omega }^{2}}+\overline{b}c{{\omega }^{2}}+a\overline{c}\omega +\overline{a}c{{\omega }^{2}}........\left( 2 \right)\]
Similarly we evaluate $ {{\left| z \right|}^{2}} $ by putting $ z=a+b{{\omega }^{2}}+c\omega $ to have;
\[{{\left| z \right|}^{2}}=z\overline{z}=\left( a+b{{\omega }^{2}}+c\omega \right)\left( \overline{a+b{{\omega }^{2}}+c\omega } \right)\]
We use additive and multiplicative property of conjugate to have;
\[\begin{align}
& \Rightarrow {{\left| z \right|}^{2}}=\left( a+b{{\omega }^{2}}+c\omega \right)\left( \overline{a}+\overline{b}\overline{{{\omega }^{2}}}+\overline{c}\overline{\omega } \right) \\
& \Rightarrow {{\left| z \right|}^{2}}=\left( a+b{{\omega }^{2}}+c\omega \right)\left( \overline{a}+\overline{b}\omega +\overline{c}{{\omega }^{2}} \right) \\
& \Rightarrow {{\left| z \right|}^{2}}=a\overline{a}+a\overline{b}\omega +a\overline{c}{{\omega }^{2}}+\overline{a}b{{\omega }^{2}}+b\overline{b}{{\omega }^{3}}+b\overline{c}{{\omega }^{4}}+\overline{a}c\omega +\overline{b}c{{\omega }^{2}}+c\overline{c}{{\omega }^{3}} \\
\end{align}\]
We put $ {{\omega }^{3}}=1,{{\omega }^{4}}={{\omega }^{3}}\cdot \omega =1\cdot \omega =\omega $ in the above step to have;
\[\Rightarrow {{\left| z \right|}^{2}}={{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}}+a\overline{b}\omega +\overline{a}b{{\omega }^{2}}+b\overline{c}\omega +\overline{b}c{{\omega }^{2}}+a\overline{c}{{\omega }^{2}}+\overline{a}c\omega .......\left( 3 \right)\]
We add respective sides of equation (1),(2), (3) to have;
\[\begin{align}
& {{\left| x \right|}^{2}}+{{\left| y \right|}^{2}}+{{\left| z \right|}^{2}}=3\left( {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}} \right)+a\overline{b}\left( 1+\omega +{{\omega }^{2}} \right)+\overline{a}b\left( 1+\omega +{{\omega }^{2}} \right)+b\overline{c}\left( 1+\omega +{{\omega }^{2}} \right) \\
& +\overline{b}c\left( 1+\omega +{{\omega }^{2}} \right)+a\overline{c}\left( 1+\omega +{{\omega }^{2}} \right)+\overline{a}c\left( 1+\omega +{{\omega }^{2}} \right) \\
\end{align}\]
We put $ 1+\omega +{{\omega }^{2}}=0 $ in the above step to have;
\[{{\left| x \right|}^{2}}+{{\left| y \right|}^{2}}+{{\left| z \right|}^{2}}=3\left( {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}} \right)\]
We divide both sides by $ \left( {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}} \right) $ to have;
\[\dfrac{{{\left| x \right|}^{2}}+{{\left| y \right|}^{2}}+{{\left| z \right|}^{2}}}{{{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}}}=3\]
Note:
We note that the division by $ \left( {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}} \right) $ because modulus is always non-negative and since we are given $ a,b,c $ are non-zero complex number $ \left( {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}} \right) $ cannot be zero. We note that we can also represent any complex number in the form of $ {{e}^{i\theta }}=\cos \theta +i\sin \theta $ . That is why the cue root unity is $ {{e}^{i\dfrac{\pi }{3}}}=\cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3}=\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}=\omega $ . Similarly we can express the $ {{n}^{\text{th}}} $ root of unity as $ {{e}^{i\dfrac{\pi }{n}}} $ .
Complete step by step answer:
We know that we represent the cube roots of unity as $ 1,\omega =-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}={{e}^{i\dfrac{\pi }{3}}},{{\omega }^{2}}=\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}={{e}^{i\dfrac{2\pi }{3}}} $ . We know that sum of cube roots of unity is zero that is
\[1+\omega +{{\omega }^{2}}=0\]
We also know that the power $ n $ on cube roots of unity returns as follows;
\[{{\omega }^{n}}=\left\{ \begin{matrix}
1 & \text{if }n\equiv 0\bmod \left( 3 \right) \\
\omega & \text{if }n\equiv 1\bmod \left( 3 \right) \\
{{\omega }^{2}} & \text{if }n\equiv 2\bmod \left( 3 \right) \\
\end{matrix} \right.\]
We know that the general form of a complex number is $ z=a+ib $ where $ a\in R $ is called the real part of $ z $ and $ b\in R $ is called the imaginary part of the complex number. We know that the modulus of a complex x number is defined as \[\left| z \right|=\left| a\pm ib \right|=\sqrt{{{a}^{2}}+{{b}^{2}}}\]. We know the property that $ {{\left| z \right|}^{2}}=z\overline{z} $ . We also know the multiplicative and additive property of conjugate respectively as;
\[\begin{align}
& \overline{xy}=\overline{x}\cdot \overline{y} \\
& \overline{x+y+z}=\overline{x}+\overline{y}+\overline{z} \\
\end{align}\]
So we use the above property on the cube roots of unity and have;
\[\overline{\omega }={{\omega }^{2}},\overline{{{\omega }^{2}}}=\omega \]
We are give in the question the cube root of unity $ \omega ={{e}^{i\dfrac{\pi }{3}}} $ that $ a,b,c,x,y,z $ are non-zero complex numbers such that,
\[\begin{align}
& a+b+c=x \\
& a+b\omega +c{{\omega }^{2}}=y \\
& a+b{{\omega }^{2}}+c\omega =z \\
\end{align}\]
We use the property of $ {{\left| z \right|}^{2}}=z\overline{z} $ to have;
\[{{\left| x \right|}^{2}}=x\overline{x},{{\left| y \right|}^{2}}=y\overline{y},{{\left| z \right|}^{2}}=z\overline{z}\]
So we put the given expressions in $ {{\left| x \right|}^{2}} $ in terms of $ a,b,c $ for the numerators of the expression to be evaluated and have;
\[{{\left| x \right|}^{2}}=x\overline{x}=\left( a+b+c \right)\left( \overline{a+b+c} \right)\]
We use additive property of conjugate to have;
\[\begin{align}
& \Rightarrow {{\left| x \right|}^{2}}=\left( a+b+c \right)\left( \overline{a}+\overline{b}+\overline{c} \right) \\
& \Rightarrow {{\left| x \right|}^{2}}=a\overline{a}+b\overline{b}+c\overline{c}+a\overline{b}+a\overline{c}+\overline{a}b+\overline{b}c+\overline{a}c+a\overline{c} \\
\end{align}\]
We use the property $ {{\left| z \right|}^{2}}=z\overline{z} $ to have;
\[\Rightarrow {{\left| x \right|}^{2}}={{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}}+a\overline{b}+\overline{a}b+\overline{b}c+\overline{b}c+a\overline{c}+\overline{a}c.........\left( 1 \right)\]
Similarly we evaluate $ {{\left| y \right|}^{2}} $ by putting $ y=a+b\omega +c{{\omega }^{2}} $ to have;
\[{{\left| y \right|}^{2}}=y\overline{y}=\left( a+b\omega +c{{\omega }^{2}} \right)\left( \overline{a+b\omega +c{{\omega }^{2}}} \right)\]
We use additive and multiplicative property of conjugate to have;
\[\begin{align}
& \Rightarrow {{\left| y \right|}^{2}}=\left( a+b\omega +c{{\omega }^{2}} \right)\left( \overline{a}+\overline{b}\overline{\omega }+\overline{c}\overline{{{\omega }^{2}}} \right) \\
& \Rightarrow {{\left| y \right|}^{2}}=\left( a+b\omega +c{{\omega }^{2}} \right)\left( \overline{a}+\overline{b}{{\omega }^{2}}+\overline{c}\omega \right) \\
& \Rightarrow {{\left| y \right|}^{2}}=a\overline{a}+a\overline{b}{{\omega }^{2}}+a\overline{c}\omega +\overline{a}b\omega +b\overline{b}{{\omega }^{3}}+b\overline{c}{{\omega }^{2}}+\overline{a}c{{\omega }^{2}}+\overline{b}c{{\omega }^{2}}+c\overline{c}{{\omega }^{3}} \\
\end{align}\]
We put $ {{\omega }^{3}}=1 $ in the above step to have;
\[\Rightarrow {{\left| y \right|}^{2}}={{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}}+a\overline{b}{{\omega }^{2}}+\overline{a}b\omega +b\overline{c}{{\omega }^{2}}+\overline{b}c{{\omega }^{2}}+a\overline{c}\omega +\overline{a}c{{\omega }^{2}}........\left( 2 \right)\]
Similarly we evaluate $ {{\left| z \right|}^{2}} $ by putting $ z=a+b{{\omega }^{2}}+c\omega $ to have;
\[{{\left| z \right|}^{2}}=z\overline{z}=\left( a+b{{\omega }^{2}}+c\omega \right)\left( \overline{a+b{{\omega }^{2}}+c\omega } \right)\]
We use additive and multiplicative property of conjugate to have;
\[\begin{align}
& \Rightarrow {{\left| z \right|}^{2}}=\left( a+b{{\omega }^{2}}+c\omega \right)\left( \overline{a}+\overline{b}\overline{{{\omega }^{2}}}+\overline{c}\overline{\omega } \right) \\
& \Rightarrow {{\left| z \right|}^{2}}=\left( a+b{{\omega }^{2}}+c\omega \right)\left( \overline{a}+\overline{b}\omega +\overline{c}{{\omega }^{2}} \right) \\
& \Rightarrow {{\left| z \right|}^{2}}=a\overline{a}+a\overline{b}\omega +a\overline{c}{{\omega }^{2}}+\overline{a}b{{\omega }^{2}}+b\overline{b}{{\omega }^{3}}+b\overline{c}{{\omega }^{4}}+\overline{a}c\omega +\overline{b}c{{\omega }^{2}}+c\overline{c}{{\omega }^{3}} \\
\end{align}\]
We put $ {{\omega }^{3}}=1,{{\omega }^{4}}={{\omega }^{3}}\cdot \omega =1\cdot \omega =\omega $ in the above step to have;
\[\Rightarrow {{\left| z \right|}^{2}}={{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}}+a\overline{b}\omega +\overline{a}b{{\omega }^{2}}+b\overline{c}\omega +\overline{b}c{{\omega }^{2}}+a\overline{c}{{\omega }^{2}}+\overline{a}c\omega .......\left( 3 \right)\]
We add respective sides of equation (1),(2), (3) to have;
\[\begin{align}
& {{\left| x \right|}^{2}}+{{\left| y \right|}^{2}}+{{\left| z \right|}^{2}}=3\left( {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}} \right)+a\overline{b}\left( 1+\omega +{{\omega }^{2}} \right)+\overline{a}b\left( 1+\omega +{{\omega }^{2}} \right)+b\overline{c}\left( 1+\omega +{{\omega }^{2}} \right) \\
& +\overline{b}c\left( 1+\omega +{{\omega }^{2}} \right)+a\overline{c}\left( 1+\omega +{{\omega }^{2}} \right)+\overline{a}c\left( 1+\omega +{{\omega }^{2}} \right) \\
\end{align}\]
We put $ 1+\omega +{{\omega }^{2}}=0 $ in the above step to have;
\[{{\left| x \right|}^{2}}+{{\left| y \right|}^{2}}+{{\left| z \right|}^{2}}=3\left( {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}} \right)\]
We divide both sides by $ \left( {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}} \right) $ to have;
\[\dfrac{{{\left| x \right|}^{2}}+{{\left| y \right|}^{2}}+{{\left| z \right|}^{2}}}{{{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}}}=3\]
Note:
We note that the division by $ \left( {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}} \right) $ because modulus is always non-negative and since we are given $ a,b,c $ are non-zero complex number $ \left( {{\left| a \right|}^{2}}+{{\left| b \right|}^{2}}+{{\left| c \right|}^{2}} \right) $ cannot be zero. We note that we can also represent any complex number in the form of $ {{e}^{i\theta }}=\cos \theta +i\sin \theta $ . That is why the cue root unity is $ {{e}^{i\dfrac{\pi }{3}}}=\cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3}=\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}=\omega $ . Similarly we can express the $ {{n}^{\text{th}}} $ root of unity as $ {{e}^{i\dfrac{\pi }{n}}} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

