
Let $ \omega $ be the complex number $ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} $ . Then the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ is equal to
A. 1
B. 2
C. -1
D. -2
Answer
546.6k+ views
Hint:
We first apply the row-column operations to simplify the given determinant and then expand it along a column. We use the identities like $ 1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1 $ to find the cubic equation of z. we solve the equation through factorisation and find the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ .
Complete step by step answer:
Let $ \omega $ be the complex number $ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} $ . $ \omega $ is the complex root of unity.
We have the identities that $ 1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1 $ .
We have been given the equation $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ . The determinant value is 0.
We first try to expand the determinant using some row-column operations.
We apply the operation $ {{C}_{1}}^{'}={{C}_{1}}+{{C}_{2}}+{{C}_{3}} $ .
So, $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left| \begin{matrix}
z+1+\omega +{{\omega }^{2}} & \omega & {{\omega }^{2}} \\
z+1+\omega +{{\omega }^{2}} & z+{{\omega }^{2}} & 1 \\
z+1+\omega +{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right| $ .
Now we take the common term $ z+1+\omega +{{\omega }^{2}} $ out of the first column.
So, \[\left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left( z+1+\omega +{{\omega }^{2}} \right)\left| \begin{matrix}
1 & \omega & {{\omega }^{2}} \\
1 & z+{{\omega }^{2}} & 1 \\
1 & 1 & z+\omega \\
\end{matrix} \right|\].
Now we apply the operation $ {{R}_{2}}^{'}={{R}_{2}}-{{R}_{1}};{{R}_{3}}^{'}={{R}_{3}}-{{R}_{1}} $ . We have $ 1+\omega +{{\omega }^{2}}=0 $ .
So, \[\left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left( z \right)\left| \begin{matrix}
1 & \omega & {{\omega }^{2}} \\
0 & z+{{\omega }^{2}}-\omega & 1-{{\omega }^{2}} \\
0 & 1-\omega & z+\omega -{{\omega }^{2}} \\
\end{matrix} \right|\].
Now we expand the determinant along the first column and get
\[z\left[ \left( z+{{\omega }^{2}}-\omega \right)\left( z+\omega -{{\omega }^{2}} \right)-\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right) \right]=0\].
We simplify the equation and get
\[\begin{align}
& \Rightarrow z\left[ {{z}^{2}}-{{\left( \omega -{{\omega }^{2}} \right)}^{2}}-1+{{\omega }^{3}}-\omega -{{\omega }^{2}} \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}-{{\omega }^{2}}-{{\omega }^{4}}+2{{\omega }^{3}}+1 \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}-{{\omega }^{2}}-\omega +2+1 \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}+4 \right]=0 \\
\end{align}\]
We apply factorisation and get the values of z as $ z=0,\pm 2i $ where $ i=\sqrt{-1} $ .
Therefore, the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ is equal to 2. The correct option is B.
Note:
We need to always remember that in the case of determinant the multiplication and division happen only for a single row or column. In the case of the matrix, it happens for all the elements. Multiple row-column operations in a single step are not possible as the consecutive changes have to be followed.
We first apply the row-column operations to simplify the given determinant and then expand it along a column. We use the identities like $ 1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1 $ to find the cubic equation of z. we solve the equation through factorisation and find the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ .
Complete step by step answer:
Let $ \omega $ be the complex number $ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} $ . $ \omega $ is the complex root of unity.
We have the identities that $ 1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1 $ .
We have been given the equation $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ . The determinant value is 0.
We first try to expand the determinant using some row-column operations.
We apply the operation $ {{C}_{1}}^{'}={{C}_{1}}+{{C}_{2}}+{{C}_{3}} $ .
So, $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left| \begin{matrix}
z+1+\omega +{{\omega }^{2}} & \omega & {{\omega }^{2}} \\
z+1+\omega +{{\omega }^{2}} & z+{{\omega }^{2}} & 1 \\
z+1+\omega +{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right| $ .
Now we take the common term $ z+1+\omega +{{\omega }^{2}} $ out of the first column.
So, \[\left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left( z+1+\omega +{{\omega }^{2}} \right)\left| \begin{matrix}
1 & \omega & {{\omega }^{2}} \\
1 & z+{{\omega }^{2}} & 1 \\
1 & 1 & z+\omega \\
\end{matrix} \right|\].
Now we apply the operation $ {{R}_{2}}^{'}={{R}_{2}}-{{R}_{1}};{{R}_{3}}^{'}={{R}_{3}}-{{R}_{1}} $ . We have $ 1+\omega +{{\omega }^{2}}=0 $ .
So, \[\left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left( z \right)\left| \begin{matrix}
1 & \omega & {{\omega }^{2}} \\
0 & z+{{\omega }^{2}}-\omega & 1-{{\omega }^{2}} \\
0 & 1-\omega & z+\omega -{{\omega }^{2}} \\
\end{matrix} \right|\].
Now we expand the determinant along the first column and get
\[z\left[ \left( z+{{\omega }^{2}}-\omega \right)\left( z+\omega -{{\omega }^{2}} \right)-\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right) \right]=0\].
We simplify the equation and get
\[\begin{align}
& \Rightarrow z\left[ {{z}^{2}}-{{\left( \omega -{{\omega }^{2}} \right)}^{2}}-1+{{\omega }^{3}}-\omega -{{\omega }^{2}} \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}-{{\omega }^{2}}-{{\omega }^{4}}+2{{\omega }^{3}}+1 \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}-{{\omega }^{2}}-\omega +2+1 \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}+4 \right]=0 \\
\end{align}\]
We apply factorisation and get the values of z as $ z=0,\pm 2i $ where $ i=\sqrt{-1} $ .
Therefore, the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ is equal to 2. The correct option is B.
Note:
We need to always remember that in the case of determinant the multiplication and division happen only for a single row or column. In the case of the matrix, it happens for all the elements. Multiple row-column operations in a single step are not possible as the consecutive changes have to be followed.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

