
Let $ \omega $ be the complex number $ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} $ . Then the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ is equal to
A. 1
B. 2
C. -1
D. -2
Answer
540k+ views
Hint:
We first apply the row-column operations to simplify the given determinant and then expand it along a column. We use the identities like $ 1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1 $ to find the cubic equation of z. we solve the equation through factorisation and find the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ .
Complete step by step answer:
Let $ \omega $ be the complex number $ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} $ . $ \omega $ is the complex root of unity.
We have the identities that $ 1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1 $ .
We have been given the equation $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ . The determinant value is 0.
We first try to expand the determinant using some row-column operations.
We apply the operation $ {{C}_{1}}^{'}={{C}_{1}}+{{C}_{2}}+{{C}_{3}} $ .
So, $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left| \begin{matrix}
z+1+\omega +{{\omega }^{2}} & \omega & {{\omega }^{2}} \\
z+1+\omega +{{\omega }^{2}} & z+{{\omega }^{2}} & 1 \\
z+1+\omega +{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right| $ .
Now we take the common term $ z+1+\omega +{{\omega }^{2}} $ out of the first column.
So, \[\left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left( z+1+\omega +{{\omega }^{2}} \right)\left| \begin{matrix}
1 & \omega & {{\omega }^{2}} \\
1 & z+{{\omega }^{2}} & 1 \\
1 & 1 & z+\omega \\
\end{matrix} \right|\].
Now we apply the operation $ {{R}_{2}}^{'}={{R}_{2}}-{{R}_{1}};{{R}_{3}}^{'}={{R}_{3}}-{{R}_{1}} $ . We have $ 1+\omega +{{\omega }^{2}}=0 $ .
So, \[\left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left( z \right)\left| \begin{matrix}
1 & \omega & {{\omega }^{2}} \\
0 & z+{{\omega }^{2}}-\omega & 1-{{\omega }^{2}} \\
0 & 1-\omega & z+\omega -{{\omega }^{2}} \\
\end{matrix} \right|\].
Now we expand the determinant along the first column and get
\[z\left[ \left( z+{{\omega }^{2}}-\omega \right)\left( z+\omega -{{\omega }^{2}} \right)-\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right) \right]=0\].
We simplify the equation and get
\[\begin{align}
& \Rightarrow z\left[ {{z}^{2}}-{{\left( \omega -{{\omega }^{2}} \right)}^{2}}-1+{{\omega }^{3}}-\omega -{{\omega }^{2}} \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}-{{\omega }^{2}}-{{\omega }^{4}}+2{{\omega }^{3}}+1 \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}-{{\omega }^{2}}-\omega +2+1 \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}+4 \right]=0 \\
\end{align}\]
We apply factorisation and get the values of z as $ z=0,\pm 2i $ where $ i=\sqrt{-1} $ .
Therefore, the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ is equal to 2. The correct option is B.
Note:
We need to always remember that in the case of determinant the multiplication and division happen only for a single row or column. In the case of the matrix, it happens for all the elements. Multiple row-column operations in a single step are not possible as the consecutive changes have to be followed.
We first apply the row-column operations to simplify the given determinant and then expand it along a column. We use the identities like $ 1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1 $ to find the cubic equation of z. we solve the equation through factorisation and find the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ .
Complete step by step answer:
Let $ \omega $ be the complex number $ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} $ . $ \omega $ is the complex root of unity.
We have the identities that $ 1+\omega +{{\omega }^{2}}=0;{{\omega }^{3}}=1 $ .
We have been given the equation $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ . The determinant value is 0.
We first try to expand the determinant using some row-column operations.
We apply the operation $ {{C}_{1}}^{'}={{C}_{1}}+{{C}_{2}}+{{C}_{3}} $ .
So, $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left| \begin{matrix}
z+1+\omega +{{\omega }^{2}} & \omega & {{\omega }^{2}} \\
z+1+\omega +{{\omega }^{2}} & z+{{\omega }^{2}} & 1 \\
z+1+\omega +{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right| $ .
Now we take the common term $ z+1+\omega +{{\omega }^{2}} $ out of the first column.
So, \[\left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left( z+1+\omega +{{\omega }^{2}} \right)\left| \begin{matrix}
1 & \omega & {{\omega }^{2}} \\
1 & z+{{\omega }^{2}} & 1 \\
1 & 1 & z+\omega \\
\end{matrix} \right|\].
Now we apply the operation $ {{R}_{2}}^{'}={{R}_{2}}-{{R}_{1}};{{R}_{3}}^{'}={{R}_{3}}-{{R}_{1}} $ . We have $ 1+\omega +{{\omega }^{2}}=0 $ .
So, \[\left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=\left( z \right)\left| \begin{matrix}
1 & \omega & {{\omega }^{2}} \\
0 & z+{{\omega }^{2}}-\omega & 1-{{\omega }^{2}} \\
0 & 1-\omega & z+\omega -{{\omega }^{2}} \\
\end{matrix} \right|\].
Now we expand the determinant along the first column and get
\[z\left[ \left( z+{{\omega }^{2}}-\omega \right)\left( z+\omega -{{\omega }^{2}} \right)-\left( 1-\omega \right)\left( 1-{{\omega }^{2}} \right) \right]=0\].
We simplify the equation and get
\[\begin{align}
& \Rightarrow z\left[ {{z}^{2}}-{{\left( \omega -{{\omega }^{2}} \right)}^{2}}-1+{{\omega }^{3}}-\omega -{{\omega }^{2}} \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}-{{\omega }^{2}}-{{\omega }^{4}}+2{{\omega }^{3}}+1 \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}-{{\omega }^{2}}-\omega +2+1 \right]=0 \\
& \Rightarrow z\left[ {{z}^{2}}+4 \right]=0 \\
\end{align}\]
We apply factorisation and get the values of z as $ z=0,\pm 2i $ where $ i=\sqrt{-1} $ .
Therefore, the number of distinct complex number z satisfying $ \left| \begin{matrix}
z+1 & \omega & {{\omega }^{2}} \\
\omega & z+{{\omega }^{2}} & 1 \\
{{\omega }^{2}} & 1 & z+\omega \\
\end{matrix} \right|=0 $ is equal to 2. The correct option is B.
Note:
We need to always remember that in the case of determinant the multiplication and division happen only for a single row or column. In the case of the matrix, it happens for all the elements. Multiple row-column operations in a single step are not possible as the consecutive changes have to be followed.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Our national song Vande Mataram was taken from which class 10 social science CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

